BT3: Tìm các cặp số (x,y) thỏa mãn : \(\left(x-y\right)^{2016}+\text{|}x^2-2y\text{|}=0\)
Tìm các cặp số x,y thỏa mãn
\(x^2-2\text{x}y+2y^2-2\text{x}-10y+17=0\)
Bạn xem lại xem đã viết phương trình đúng chưa vậy?
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm tất cả các cặp (x; y) nguyên thỏa mãn \(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)
<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)
<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)
<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)
=>phương trình vô nghiệm
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Tìm các cặp số nguyên (x,y) thỏa mãn: \(x\left(x-y+1\right)=y\left(y^2+2y-1\right).\)
Tìm cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên \(\left(x;y\right)\)thõa mãn:
\(\text{|}x+2\text{|}+\text{|}x-1\text{|}=3-\left(y+2\right)^2\)
ta có \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)
=> \(VT\ge3\)
mà \(3-\left(y+2\right)^2\le3\Rightarrow VP\le3\)
=> VT=VP=3 <=> ... cậu tự giải tiếp nhé