Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Xuân Phong
Xem chi tiết
T.Thùy Ninh
6 tháng 6 2017 lúc 16:04

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

Nguyễn Xuân Tiến 24
6 tháng 6 2017 lúc 16:07

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

Nii-chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2020 lúc 21:04

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

Huỳnh Khánh Ly
Xem chi tiết
Yêu nhầm yêu lại lại Yêu...
28 tháng 9 2016 lúc 16:06

5n^3 + 15n^2 +10n

=(5n^3 + 15n^2+ 10n) 

= 30n^6 chia hết cho 30

TFboys_Lê Phương Thảo
28 tháng 9 2016 lúc 16:26

Ta có : 5n3+15n2+10n

=5n(n2+3n+2)

Ta thấy : 5 chia hết cho 30 

Hay : 5n chia hết cho 30

Vậy đpcm

Magic Kaito
Xem chi tiết
o0o I am a studious pers...
21 tháng 7 2016 lúc 20:47

\(5n^3+15n^2+10n\)

\(=x\left(x+1\right)\left(x+2\right)\)

Ta có : \(x;x+1;x+2\)là 3 số tự nhiên liên tiếp 

=> \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 ; 3 ; 6 => \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 30 ( đpcm )

Hoàng Thủy Tiên
21 tháng 7 2016 lúc 20:52

\(A=5n^3+15n^2+10n\)

\(=5n^3+5n^2+10n^2+10n\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=\left(n+1\right)\left(5n^2+10n\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

do \(n;n+1;n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n;n+1;n+2\)chia hết cho 6

\(\Rightarrow A\)chia hết cho 5 và 6

mà 5 và 6 là 2 số nguyên tố cùng nhau

\(\Rightarrow A\)chia hết cho 30 (dpcm)

Chúc pn hk tốt ^-^

o0o Hinata o0o
21 tháng 7 2016 lúc 21:04

\(5n^3+15n^2+10n\)

\(=x\left(x+1\right)\left(x+2\right)\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\)chia hết cho 30

hoa bui
Xem chi tiết
Phạm Thị Mỹ Dung
19 tháng 10 2017 lúc 21:42

\(Ta\)\(có\)\(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)

                 \(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)

                 \(=5n\left(n+1\right)\left(n+2\right)\)

\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)

\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)

hoa bui
21 tháng 10 2017 lúc 19:41

bạn giúp mk bài 2 nx

Nobi Nobita
18 tháng 10 2020 lúc 10:10

Bài 1:

 \(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]\)

\(=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)

Vì \(n\)\(n+1\)là 2 số nguyên liên tiếp 

\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)(1)

Vì \(n\)\(n+1\)\(n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)(2)

Vì \(\left(2;3\right)=1\)(3)

Từ (1), (2) và (3) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\)

\(\Rightarrow5n^3+15n^2+10n⋮30\)( đpcm )

Bài 2:

Gọi 4 số nguyên dương liên tiếp là \(a\)\(a+1\)\(a+2\)\(a+3\)\(a\inℕ^∗\))

Theo bài, ta có: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)

\(\Leftrightarrow a\left(a+3\right)\left(a+1\right)\left(a+2\right)=120\)

\(\Leftrightarrow\left(a^2+3a\right)\left(a^2+3a+2\right)=120\)

Đặt \(a^2+3a+1=t\)

\(\Rightarrow\left(t-1\right)\left(t+1\right)=120\)\(\Leftrightarrow t^2-1-120=0\)

\(\Leftrightarrow t^2-121=0\)\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-11=0\\t+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=11\\t=-11\end{cases}}\)

+) TH1: Nếu \(t=-11\)\(\Rightarrow a^2+3a+1=-11\)

\(\Leftrightarrow a^2+3a+12=0\)( không có nghiệm nguyên )

+) TH2: Nếu \(t=11\)\(\Rightarrow a^2+3a+1=11\)

\(\Leftrightarrow a^2+3a-10=0\)\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2=0\\a+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\a=-5\end{cases}}\)

Vì \(a\inℕ^∗\)\(\Rightarrow a=2\)thỏa mãn đề bài 

Vậy 4 số nguyên dương cần tìm là 2, 3, 4, 5

Khách vãng lai đã xóa
Ngô Linh
Xem chi tiết
Linh Ngô
Xem chi tiết
loan cao thị
Xem chi tiết
Đoàn Thị Thu Hương
1 tháng 9 2015 lúc 21:08

A= n(2n-3)-2n(n+1)

A= 2n2-3n-2n2-2n

A=-5n

vì -5 chia hết cho 5

Nên -5n chia hết cho 5

hay A chia hết cho 5 với n thuộc z

đỗ minh khôi
Xem chi tiết