áp dụng hằng đẳng thức , Thu gọn \(\left(x^2+1\right)\left(x^4-x^2+1\right)\)
Dùng hằng đẳng thức để triển khai và thu gọn
\(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)
\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)
\(=2\)
=2 nha ban
(con cach lam ban nhan dang thuc len rui rut gon lai)
tìm x , bt :
\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)36
Áp dụng hằng đẳng thức tìm x
3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
=> 3(x^2 + 4x + 4) + 4x^2 - 4x + 1 - 7(x^2 - 9) = 36
=> 3x^2 + 12x + 12 + 4x^2 - 4x + 1 - 7x^2 + 63 = 36
=> 8x + 76 = 36
=> 8x = -40
=> x = -5
Dùng hằng đẳng thức để triển khai và thu gọn:
a) \(x\left(x-1\right).\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x+4\right).\left(x-4\right)\)
c) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)
\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)
\(=\left(x+1\right)\cdot\left(-1\right)\)
\(=-1\left(x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)
\(=x^3-1-x^3-8+12x-12\)
\(=-21+12x\)
c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)
\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)
\(=0\)
Dùng hằng đẳng thức để khai triển và thu gọn :
a,\(\left(-3xy^4+\dfrac{1}{2}x^2y^2\right)^3\)
b,\(\left(-\dfrac{1}{3}ab^2-2a^3b\right)^3\)
Dùng hằng đẳng thức để triển khai và thu gọn"
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
a) = (x+1-x+1)(x2+2x+1+x2-1+x2-2x+1)- 6(x2-1)
= 2( 3x2+1)- 6(x2-1)
= 2( 3x2+1-3x2+3)
=2. 4
=8
Áp dụng bằng hằng đẳng thức đáng nhớ để thực hiện phép chia :
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
a) (x2 +2xy + y2 ) : (x +y)
= (x +y)2 : (x +y)
= x + y
b) (125x3 + 1) : (5x + 1)
= (5x + 1)(25x2 - 5x + 1) : (5x + 1)
= 25x2 - 5x + 1
c) \(\left(x^2-2xy+y^2\right)\left(y-x\right)\)
= \(\left(x-y\right)^2:\left(y-x\right)\)
= \(x-y\)
C=\(\left(x+2y\right)^3\)-6\(\left(x+2y\right)^2\)+12\(\left(x+2y\right)\)-8 tại x=20, y=1
Áp dụng hằng đẳng thức để rút gọn rồi mới thay số ạ
`C=(x+2y)^3-6(x+2y)^2+12(x+2y)-8`
`C=(x+2y-2)^3` (HĐT số `5`)
Thay `x=20;y=1` vào `C` có:
`C=(20+2.1-2)^3=8000`.
Rút gọn(sử dụng hằng đẳng thức): \(\left(5-3x\right)^3-\left(x+8\right)\left(x-8\right)+\left(3-x\right)^2\)
Đặng Phương Thảo Bạn đến cùng thời gian với vài nick ra đi,haizz.
uk Minh Triều cãi nhau vs tụi mk ra đi rồi
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(2x^2-1\right)^2\)
b, \(\left(\dfrac{1}{2}x+3y^2\right)^2\)
a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)
\(=4x^4-4x^2+1\).
b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)
\(=\frac{1}{4}x^2+3y^2x+9y^4\)
Chúc bn hc tốt!