Trong mặt phẳng tọa độ cho 2 điểm A và B biết A(1;2); B(-2;-4)
a) Tính OA, OB
Chứng tỏ các điểm O,A,B thẳng hàng bằng 2 cách.
Trong mặt phẳng tọa độ Oxy, cho điểm B(2;4). tìm tọa độ của điểm A biết V(O;2) (A)=B.
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=√5AE5AE ( biết O là gốc tọa độ và m lớn hơn 0 ).
a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)
Do đó: AB=BC
hay ΔABC cân tại B
Trong mặt phẳng Oxy, cho ba điểm A, B, C với B là trung điểm của đoạn thẳng AC. Tìm tọa độ điểm C, biết A(1; 3) và B(2; -1).
\(\left\{{}\begin{matrix}x_B=\dfrac{x_A+x_C}{2}\\y_B=\dfrac{y_A+y_C}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1+x_C=4\\3+y_C=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3\\y_C=-5\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 3) và B(4; 2). Tìm tọa độ điểm C thuộc trục hoành sao cho C cách đều hai điểm A và B
A. C − 5 3 ; 0 .
B. C 5 3 ; 0 .
C. C − 3 5 ; 0 .
D. C 3 5 ; 0 .
Ta có C ∈ O x nên C(x, 0) và A C → = x − 1 ; − 3 B C → = x − 4 ; − 2 .
Do C A = C B ⇔ C A 2 = C B 2 .
⇔ x − 1 2 + − 3 2 = x − 4 2 + − 2 2 ⇔ x 2 − 2 x + 1 + 9 = x 2 − 8 x + 16 + 4 ⇔ 6 x = 10 ⇔ x = 5 3 ⇒ C 5 3 ; 0
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có A(1; -1) và B(3; 0). Tìm tọa độ điểm D, biết D có tung độ âm.
A.D(0; -1)
B. D( 2; -3)
C. D( 2; -3); D(0; 1)
D. D( -2; -3)
Gọi C= (x, y). Ta có A B → = 2 ; 1 B C → = x − 3 ; y .
Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C
⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2 hoặc x = 2 y = 2 .
Với C 1 4 ; − 2 ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.
Với C 2 2 ; 2 ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.
Chọn B.
trong mặt phẳng hệ tọa độ Oxy cho hai điểm A(3;-1) ; B(1;1) . Tìm tọa độ điểm E biết điểm E thuộc trục tung và 3 điểm A , B , E thẳng hàng .
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=\(\sqrt{5}AE\) ( biết O là gốc tọa độ và m lớn hơn 0 ).
a: \(AB=\sqrt{\left(2+2\right)^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Do đó: ΔABC cân tại B
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B?
A. C(4; 0)
B.C(- 2; 2)
C. C(4; 0); C( -2; 2)
D. C(2; 0)
Gọi C(x, y).
Ta có B A → = 1 ; 3 B C → = x − 1 ; y − 1 .
Tam giác ABC vuông cân tại B:
⇔ B A → . B C → = 0 B A = B C ⇔ 1. x − 1 + 3. y − 1 = 0 1 2 + 3 2 = x − 1 2 + y − 1 2
⇔ x = 4 − 3 y 10 y 2 − 20 y = 0 ⇔ y = 0 x = 4 hay y = 2 x = − 2 .
Chọn C.
1, Trong mặt phẳng tọa độ Oxy , cho M(1;-1) . N (3;2) , P(0;-5) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC Tìm tọa độ điểm A
2, Trong mặt phẳng tọa độ Oxy , cho A(1;3) , B(-1;-2) , C(1;5) . Tọa độ D trên trục Ox sao cho ABCD là hình thang có 2 đấy AB và CD là ?
Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C(-1;-2) Điểm M thỏa mãn \(\overrightarrow{2MB}+\overrightarrow{3MC}=\overrightarrow{0}\) Tìm tọa độ điểm M
Trong mặt phẳng tọa độ Oxy , cho vecto \(\overrightarrow{u}=\left(2;-4\right),\overrightarrow{a}=\left(1;-2\right),\overrightarrow{b}=\left(1;-3\right)\)Biết \(\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}\) tính m - n bẳng ?
Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD biết A(1;3); B(-1;-2).Tìm tọa độ điểm M trên Oy sao cho A,B,D thẳng hàng
GẤP Ạ
Chắc là A,B,M thẳng hàng chứ?
Do M thuộc Oy nên tọa độ có dạng: \(M\left(0;m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}=\left(2;5\right)\\\overrightarrow{BM}=\left(1;m+2\right)\end{matrix}\right.\)
A, B, M thẳng hàng \(\Rightarrow\overrightarrow{BA}\) cùng phương \(\overrightarrow{BM}\)
\(\Rightarrow\dfrac{1}{2}=\dfrac{m+2}{5}\Rightarrow m=\dfrac{1}{2}\)
\(\Rightarrow M\left(0;\dfrac{1}{2}\right)\)