phân tích đa thức sau thành nhân tử
\(f\left(x\right)=x^4+8x^3+14x^2-8x-15\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\)
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)
Gọi `A=(x^2+8x+8)(x^2+8x+15)+15`
Đặt `t=x^2+8x+11,5`
`=>A=(t-3,5)(t+3,5)+15=t^2-3,5^2+15=t^2-2,75=(t-sqrt(2,75))(t+sqrt(2,75))=(x^2+8x+11,5-(sqrt11)/2)(x^2+8x+11,5+(sqrt11)/2)=(x^2+8x+(23-\sqrt11)/2)(x^2+8x+(23+\sqrt11)/2)`
Phân tích đa thức thành nhân tử:
\(f\left(x\right)=x^4+8x^3+28x^2+48x-13\)
\(f\left(x\right)=x^4+8x^3+28x^2+48x-13\)
\(=\left(x^4+4x^3+7x^2\right)+\left(4x^3+16x^2+28x\right)+\left(5x^2+20x+35\right)-48\)
\(=x^2\left(x^2+4x+7\right)+4x\left(x^2+4x+7\right)+5\left(x^2+4x+7\right)-48\)
\(=\left(x^2+4x+7\right)\left(x^2+4x+5\right)-48\)
đặt t=\(x^2+4x+6\)khi đó g(t)=(t-1)(t+1)-48=t2-49=(t-7)(y+7)
vậy f(x)=(x2+4x-1)(x2+4x+13)
Trả lời:
Thay \(f\left(x\right)=0\), ta có:
\(0=x^4+8x^3+28x^2+48x-13\)
\(\Leftrightarrow-x^4-8x^3-28x^2-48x+13=0\)
\(\Leftrightarrow-x^4-4x^3-4x^3+x^2-16x^2-13x^2+4x-56x+13=0\)
\(\Leftrightarrow\left(-x^4-4x^3+x^2\right)+\left(-4x^3-16x^2+4x\right)+\left(-13x^2-56x+13\right)=0\)
\(\Leftrightarrow-x^2.\left(x^2+4x-1\right)-4x.\left(x^2+4x-1\right)-13.\left(x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(-x^2-4x-13\right).\left(x^2+4x-1\right)=0\)
Vì \(-x^2-4x-13=-x^2-4x-4-9\)
\(=-\left(x^2+4x+4\right)-9\)
\(=-\left(x+2\right)^2-9< 0\forall x\)
\(\Rightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-5=0\)
\(\Leftrightarrow\left(x+2\right)^2=5=\left(\pm\sqrt{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{5}\\x+2=-\sqrt{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{cases}}\)
Vậy đa thức có 2 nghiêm \(x\in\left\{-2+\sqrt{5},-2-\sqrt{5}\right\}\)
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
Phân tích đa thức thành nhân tử:
a) \(\left(xy\right)^2-xy-2\)
b) \(x^4-8x^3-16x^2+2\left(x^2-4x+4\right)-43\)
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
Phân tích đa thức sau thành nhân tử: f(x) = x^4 + 8x^3 + 28x^2 + 48x - 13
\(x^4+8x^3+28x^2+48x-13\)
\(=x^4+4x^3+13x^2+4x^3+16x^2+52x-x^2-4x-13\)
\(=x^2\left(x^2+4x+13\right)+4x\left(x^2+4x+13\right)-\left(x^2+4x+13\right)\)
\(=\left(x^2+4x-1\right)\left(x^2+4x+13\right)\)
Cho đa thức: \(f\left(x\right)=x^5-5x^4+9x^3-9x^2+8x-4\)
a) Phân tích đa thức f(x) thành nhân tử
b) Tìm các giá trị nguyện dương của x để f(x)=20
a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)
=x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)
=(x^4-4x^3+5x^2-4x+4)(x-1)
=[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)
=(x^3-2x^2+x-2)(x-2)(x-1)
=(x^2+1)(x-2)^2(x-1)
Phân tích đa thức thành nhân tử:
\(A=\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
\(B=\left(x^2+4x-3\right)^2-5x\left(x^2+4x-3\right)+6x^2\)
\(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+14x^2\)
PHÂN TÍCH CÁC ĐA THỨC SAU THÀNH NHÂN TỬ
c) \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
d) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1,5=a\)
\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)
\(\Rightarrow A=a^2-0,25-6\)
\(\Rightarrow A=a^2-\frac{25}{4}\)
\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)
Thay \(a=x^2+3x+0,5\)vào A ta có :
\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)
\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)
c, Đặt \(x^2+3x+2=a\)
Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a+2\right)\left(a-3\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
Câu d làm tương tự .
Gợi ý : (x+3)(x+5) = x2 + 8x + 15
đặt bằng a rồi giải tiếp
d) Đặt \(B=\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(B=\left(x^2+8x+7\right)\left(x^2+5x+3x+15\right)+15\)
\(B=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(a=x^2+8x+11\)
\(\Rightarrow B=\left(a-4\right)\left(a+4\right)+15\)
\(\Rightarrow B=a^2-16+15\)
\(\Rightarrow B=a^2-1\)
\(\Rightarrow B=\left(a-1\right)\left(a+1\right)\)
Thay \(a=x^2+8x+11\)vào B ta có :
\(B=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(B=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
Phân tích đa thức thành nhân tử:
3x3+8x2+14x+15
\(3x^3+8x^2+14x+15\)
\(=3x^3+5x^2+3x^2+5x+9x+15\)
\(=x^2\left(3x+5\right)+x\left(3x+5\right)+3\left(3x+5\right)\)
\(=\left(x^2+x+3\right)\left(3x+5\right)\)
Nếu phép chia ko có nghiệm nguyên thì phải có nghiệm a/b (a là ước của hệ số tự do, b là ước đương của hệ số cao nhất)
(trù đa thức bậc 4 ko có nghiệm thì phải dùng hệ số bất định)
Mong bạn hiểu lời giải của mình.Chúc bạn học tốt.