Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Tuyến
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:02

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

Nguyễn Mai Lan
16 tháng 10 2021 lúc 9:52

24

kimchitran
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 12:14

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

Lê Tài Bảo Châu
Xem chi tiết

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

mickeymouse1
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Incursion_03
6 tháng 2 2019 lúc 10:59

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

❥︵Duy™
6 tháng 2 2019 lúc 12:22

bạn icu... làm đúng rồi

hoangthiquyen
6 tháng 2 2019 lúc 12:22

mình làm giống bạn ấy

Nguyễn Ngân
Xem chi tiết
Pham Huong Giang
Xem chi tiết
Phạm Phương Nam
8 tháng 10 2017 lúc 16:23

ta có

can x+1 >=0 voi moi x

can 6-x >=0 voi moi x

=> căn x+1 + căn 6-x >= 0

Quỳnh Giang Bùi
8 tháng 10 2017 lúc 16:33

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7                                        => Q\(\ge\)\(\sqrt{7}\)

dấu bằng khi x=-1 hoặc x=6

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14             => Q\(\le\) \(\sqrt{14}\)

dấu bằng khi x+1 = 6-x    <=> 2x =5     <=> x=2.5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2018 lúc 15:28

Nguyễn Vân Khánh
Xem chi tiết
Nguyễn Hương Ly
14 tháng 7 2016 lúc 16:28

Có: Q=−x2+6x+1=−(x2−6x−1)=−(x2−6x+9−10)=−(x−3)2+10≤10
=> Max Q = 10
Dấu "=" <=> x=3

Nguyễn Vân Khánh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 7 2016 lúc 9:16

\(Q=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)

Dấu "=" xảy ra khi và chỉ khi x = 3

Vậy Max Q = 10 khi và chỉ khi x = 3