Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
我和我最好的朋友是最好的...
Xem chi tiết
Thằng phong
15 tháng 11 2017 lúc 21:24

mình đang gấp mình giải 1 phần phần kia tương tự nha dễ lắm

ta có  2n+3 \(⋮\)n-1

=>    (2n-2)+5\(⋮\)n-1 ( vì 2n +3 =(2n-2)+5)

=>    2(n-1)+5\(⋮\)n-1

mà 2(n-1)\(⋮\)n-1

để (2n-2)+5 \(⋮\)n-1

thì 5 chia hết cho n-1

=> n-1 thuộc ước của 5 là 1;-1;5;-5

th1 n-1=1 

  n=1+1

   n=2

....

vay ...

Thằng phong
15 tháng 11 2017 lúc 21:24

k minhf nha 

我和我最好的朋友是最好的...
16 tháng 11 2017 lúc 20:32

thank mik sẽ k cho bạn

Hello class 6
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 18:39

1) Ta có: \(2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

2) Ta có: \(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

mà \(n-3⋮n-3\)

nên \(5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

Vậy: \(n\in\left\{4;2;8;-2\right\}\)

Hoàng Ngọc Anh
31 tháng 10 lúc 16:59

ko biết

Phạm Phương Quỳnh
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 22:08

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

Thuốc Hồi Trinh
14 tháng 7 2023 lúc 21:41

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

Mi Chi
Xem chi tiết
Đoàn Hào
Xem chi tiết
Nguyễn Thị Thơm
Xem chi tiết
Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Đào Xuân Sơn
Xem chi tiết
Nguyễn Hải Dương
25 tháng 6 2017 lúc 16:10

A\(=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)

\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)

\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)

\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)

Ta có: tích 4 số chắn liên tiếp chia hết cho 384

=> đpcm

Ngô Tấn Đạt
25 tháng 6 2017 lúc 16:16

n chẵn => n=2k

\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)

Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24

\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)

Lê thị minh giang
Xem chi tiết
Ngạn Lâm Lộc
22 tháng 2 2018 lúc 20:29

a) Vì 4n-5 chia hết cho n-3 nên 4n - 12 + 7 chia hết cho n-3

Vì 4n - 12 = 4.(n-3) chia hết cho n-3,4n-12+7 chia hết cho n-3

Suy ra 7 chia hết cho n-3

Suy ra n-3 thuộc ước của 7

Suy ra n-3 thuộc {1;-1;7;-7}

 Suy ra  n thuộc{4;2;10;-4}

Vậy _______________________

b)Vì n^2 + 4n + 11 chia hết cho n+4 nên n(n+4) + 11 chia hết cho n+4

Mà n(n+4) chia hết cho n+4 nên 11 chia hết cho n+4

Suy ra n+4 thuộc ước của 11

Suy ra n+4 thuộc {1;-1;11;-11}

Suy ra   n   thuộc {-3;-5;7;-15}

Vậy ________________

Truong Văn Thành Tâm
Xem chi tiết