Gpt:
\(4\sqrt{x+3}+\sqrt{x-1}=x+7\)
\(Gpt:\sqrt{x^4-7}+\sqrt{x^3-7}=x^2\)
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(\sqrt{x^4-7}-\left(x^2-1\right)+\sqrt{x^3-7}-1=0\)
\(\Leftrightarrow\dfrac{x^4-7-\left(x^2-1\right)^2}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^3-8}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-4\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}\right)=0\)
Do \(x\ge\sqrt[3]{7}>1\Rightarrow x^2>1\Rightarrow x^2-1>0\)
\(\Rightarrow\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
Gpt: \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) (2 cách)
Cách 1:
GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24
Cách 2:
Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\) \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)
Pt trở thành:
\(a-b=\dfrac{a^2-b^2}{8}\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)
\(\Leftrightarrow...\)
GPt \(\sqrt{x+2}-\sqrt{x+3}=\sqrt{x+4}-\sqrt{x+7}\)
gpt \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
\(\sqrt{x+2\sqrt{x-2}}-\sqrt{x-2\sqrt{x-2}}=-2\)
\(=\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)ĐK:\(x\ge-7\)
Đặt \(t=\sqrt{x+7}\left(t\ge0\right)\)
\(\Rightarrow t+1-4=\sqrt{t^2-t-6}\)
\(\Leftrightarrow t^2-6t+9=t^2-t-6\left(t\ge3\right)\)
\(\Leftrightarrow5t=15\)
\(\Leftrightarrow t=3\left(TM\right)\)\(\Rightarrow x=2\left(tm\right)\)
S={2}
b)ĐK:\(x\ge2\)
pt\(\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+2}-\sqrt{x-2-2\sqrt{x-2}+2}=-2\)
Đặt t= can(x-2)(t>=0)
Đến đây bạn giải tiếp nhé!
#Walker
gpt:
\(\sqrt{x}+\sqrt[4]{x\left(1-x\right)}+\sqrt[4]{\left(1-x\right)^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2\left(1-x\right)}\)
gpt\(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}-\sqrt[4]{1-x}=3\)
Gpt: \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+4\sqrt{x^4-1}\)
GPT sau: \(\sqrt[3]{x+4}=\sqrt{x-1}+2x-3\)
GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{25\left(x-1\right)-\left(x+7\right)}{5\sqrt{x-1}+\sqrt{x+7}}=3x-4\)
\(\Leftrightarrow\frac{8\left(3x-4\right)}{5\sqrt{x-1}+\sqrt{x+7}}=3x-4\)
\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5\sqrt{x-1}+\sqrt{x+7}=8\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow5\left(\sqrt{x-1}-1\right)+\sqrt{x+7}-3=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+2}+\frac{x-2}{\sqrt{x+7}+3}=0\)