Những câu hỏi liên quan
VUX NA
Xem chi tiết
Trần Anh Đức
Xem chi tiết
Phạm Thị Thúy Phượng
19 tháng 7 2020 lúc 9:54

cac cap tam giac co dien h bang nhau la AOB va BOC. Vi co cap song song voi nhau va cat toi diem O

Bình luận (0)
 Khách vãng lai đã xóa
Lãnh Hàn Thiên Kinz
19 tháng 7 2020 lúc 11:39

bạn Phạm Thị Thúy Phượng gửi nhầm bài rồi 

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
19 tháng 7 2020 lúc 16:56

\(a\left(2a-1\right)+b\left(2b-1\right)=2ab\)

\(\Leftrightarrow2a^2+2b^2-a-b=2ab\le\frac{\left(a+b\right)^2}{2}\)

Mà \(2a^2+2b^2\ge\left(a+b\right)^2\)

Đặt \(a+b=t\Rightarrow t^2-t\le\frac{t^2}{2}\Leftrightarrow t^2-t\le0\Leftrightarrow t\le1\Rightarrow a+b\le1\)

\(F=\frac{a^3+2020}{b}+\frac{b^3+2020}{a}=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{a^4+b^4}{ab}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{\left(a+b\right)^4}{2\left(a+b\right)^2}+\frac{8080}{a+b}\)

\(=\frac{\left(a+b\right)^2}{2}+\frac{8080}{a+b}=\frac{\left(a+b\right)^2}{2}+\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+b\right)}+\frac{8079}{a+b}\)

\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{8\left(a+b\right)^2}}+\frac{8079}{1}=\)

đoạn cuối bí nhá 

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
Xem chi tiết
Kiệt Nguyễn
22 tháng 8 2020 lúc 21:08

Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)

Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)

Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)

Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)

Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)

\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)

\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)

Đẳng thức xảy ra khi a = b = 1

Bình luận (0)
 Khách vãng lai đã xóa
NGUYỄN MINH HUY
Xem chi tiết
Trần Minh Hoàng
14 tháng 3 2021 lúc 19:16

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

Bình luận (0)
Nguyễn Dương Thành Đạt
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 9 2021 lúc 14:24

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

\(\dfrac{1}{2a+b+c}=\dfrac{1}{4}.\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)

CMTT \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\\\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{2}{2a}+\dfrac{2}{2b}+\dfrac{2}{2c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}.4=1\)

\(minM=1\Leftrightarrow a=b=c=\dfrac{3}{4}\)

 

 

Bình luận (1)
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Hiền Ngọc
Xem chi tiết
tran ngoc quynh
Xem chi tiết
Big City Boy
Xem chi tiết
Phan Tiến Nghĩa
19 tháng 5 2022 lúc 21:38

Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)

Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

Bình luận (0)