Cho a,b,c là ba số dương thỏa mãn a + b + c =6 Tìm giá trị lớn nhất của
biểu thức: A = \(\dfrac{ab}{a+3b+2c}\)+\(\dfrac{bc}{b+3c+2a}\)+\(\dfrac{ca}{c+3a+2b}\)
Cho a,b là các số thực dương thỏa mãn a(2a - 1) + b(2b - 1) = 2ab
Tìm giá trị nhỏ nhất của biểu thức F = \(\dfrac{a^3+2020}{b}+\dfrac{b^3+2020}{a}\)
Cho a,b là các số thực dương thỏa mãn a(2a - 1) + b(2b - 1) = 2ab
Tìm giá trị nhỏ nhất của biểu thức F = \(\dfrac{a^3+2020}{b}+\dfrac{b^3+2020}{a}\)
Cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho a,b,c là cái số thực dương thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\dfrac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}\) + \(\dfrac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
Cho ba số thực dương a,b,c thỏa mãn a+b+c ≤ 2 . Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{b\left(a^2+1\right)^2}{a^2\left(b^2+1\right)}+\dfrac{c\left(b^2+1\right)^2}{b^2\left(c^2+1\right)}+\dfrac{a\left(c^2+1\right)^2}{c^2\left(a^2+1\right)}\)
Giúp mình với mình
Cho ba số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho ba số thực dương a,b,c . Tìm giá trị nhỏ nhất của biểu thức :
P = \(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}\) - \(\dfrac{2}{5\sqrt{a+b+c}}\)