Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng nguyễn anh thảo
Xem chi tiết
Nguyễn Tuấn Khôi
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Thị Yến Nhi
26 tháng 11 2016 lúc 21:56

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

Tran Thi Hue
26 tháng 11 2016 lúc 21:20

mk chua hok den nen ko co bit lam

Linh Nguyễn
26 tháng 11 2016 lúc 21:23

cảm ơn b nhé

Không có tên
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:25

b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)

\(=x^4y+2xy-xy^4-2xy\)

\(=xy\left(x^3-y^3\right)\)

\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)

Ngô Đức Anh
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Mon SLVO
2 tháng 1 2017 lúc 18:31

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

Stawaron 1
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 4 2019 lúc 21:16

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

Stawaron 1
16 tháng 4 2019 lúc 21:21

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

ta có \(\left(x-y\right)^2\ge0\)

<=> \(x^2+y^2\ge2xy\)

<=>\(x^2+y^2+2xy\ge4xy\)

<=>\(\left(x+y\right)^2\ge4xy\)

<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Kun ZERO
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2020 lúc 6:24

\(\frac{1}{x^3y^3}+\frac{1}{x^3y^3}+1\ge\frac{3}{x^2y^2}\) ; \(\frac{y^3}{z^3}+\frac{y^3}{z^3}+1\ge\frac{3y^2}{z^2}\) ; \(x^3z^3+x^3z^3+1\ge3x^2z^2\)

\(\Rightarrow2VT+3\ge2\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)+\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)\ge2\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)+3\sqrt[3]{\frac{x^2y^2z^2}{x^2y^2z^2}}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
tiêu hoàng thảo nhi
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 7 2023 lúc 8:44

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)