Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Viett Anhhh
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 18:56

\(x^4-30x^2+31x-30=0\)

\(\left(x^4+x\right)-30\left(x^2-x+1\right)=0\)

\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow x^2+x-30=0\left(x^2-x+1\ne0\right)\)

\(\left(x^2-5x\right)+\left(6x-30\right)=0\)

\(x\left(x-5\right)+6\left(x-5\right)=0\)

\(\left(x-5\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Viett Anhhh
9 tháng 12 2018 lúc 18:57

Thanks bạn nha

Thư Anh Nguyễn
Xem chi tiết

x^4 - 30x^2 + 31x - 30 = 0
<=> x^4 + x^3 - 30x^2 - x^3 - x^2 + 30x+ x^2 + x - 30 = 0
<=> x^2(x^2 + x - 30) - x(x^2 + x - 30) + (x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x + 6)(x - 5) = 0
Mà x^2 - x + 1 = (x^2 - 2.x.1/2 + 1/4) + 3/4 = (x - 1/2)^2 + 3/4 > 0
=> x = -6 hoặc x = 5

hc tốt ~:B~

KhảTâm
20 tháng 6 2019 lúc 14:18

x^4 - 30x^2 + 31x - 30 = 0
<=> x^4 + x^3 - 30x^2 - x^3 - x^2 + 30x+ x^2 + x - 30 = 0
<=> x^2(x^2 + x - 30) - x(x^2 + x - 30) + (x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x + 6)(x - 5) = 0
Mà x^2 - x + 1 = (x^2 - 2.x.1/2 + 1/4) + 3/4 = (x - 1/2)^2 + 3/4 > 0
=> x = -6 hoặc x = 5

KAl(SO4)2·12H2O
20 tháng 6 2019 lúc 14:19

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

Vì: \(x^2-x+1=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy: x = 5 hoặc x = -6

Sáng
4 tháng 1 2019 lúc 18:16

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)

Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\forall x\in R\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

Vậy, \(S=\left\{-6;5\right\}\)

phạm Hà Ly
Xem chi tiết

x^4-5x^3+5x^3-25x^2-5x^2+25x+6x-30=0

(x-5)(x^3+5x^2-5x+6)=0

(x-5)(x^3+6x^2-x^2-6x+x+6)=0

(x-5)(x+6)(x^2-x+1)=0

Suy ra x-5=0 hay x+6=0 hay x^2-x+1=0

Suy ra x=5 hay x=-6 hay x^2+2x.1/2+1/4+3/4=0

Suy ra x=5 hay x=-6 hay (x+1/2)^2=3/4=0 (vô lý)

Vậy x=5 hay x=-6

Khách vãng lai đã xóa
Khôi Nguyên Cute
Xem chi tiết
Nguyễn Thu Hằng
Xem chi tiết
Nguyễn Nam
22 tháng 11 2017 lúc 13:42

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-5x+6x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[\left(x^2-5x\right)+\left(6x-30\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x-5\right)+6\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\x-5=0\\x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(loai\right)\\x=5\\x=-6\end{matrix}\right.\)

Vậy x=5 hoặc x=-6

Bùi Hải Ngọc
Xem chi tiết
o0o I am a studious pers...
8 tháng 8 2016 lúc 20:35

Mik làm trước câu b nha

Do \(\left(x-1\right)^4\ge0\)

\(\left(x-3\right)^4\ge0\)

\(6\left(x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)\left(x-3\right)\ge0\)

\(MinA=0\)

Bùi Hải Ngọc
8 tháng 8 2016 lúc 20:42

ừ hi :)) thanks bạn

Hoàng Phúc
8 tháng 8 2016 lúc 20:46

o0o I am a studious person o0o: Chẳng lẽ khi dấu "=" xảy ra thì cùng lúc nhận đc nhiều giá trị x à?,mk thấy cách cm đó không ổn

Huyền Trần
Xem chi tiết
Lightning Farron
14 tháng 12 2016 lúc 20:32

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-5=0\\x^2-x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=5\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(loai\right)\end{array}\right.\)

Vậy \(S=\left\{-6;5\right\}\)

 

Nguyễn Văn Trung
Xem chi tiết
Nguyễn Anh Quân
21 tháng 2 2018 lúc 21:00

pt <=> (x^4+x)-(30x^2-30x+30) = 0

<=> x.(x^3+1)-30.(x^2-x+1) = 0

<=> x.(x+1).(x^2-x+1)-30.(x^2-x+1) = 0

<=> (x^2-x+1).(x^2+x-30) = 0

<=> x^2+x-30 = 0 ( vì x^2-x+1 > 0 )

<=> (x^2-5x)+(6x-30) = 0

<=> (x-5).(x+6) = 0

<=> x-5=0 hoặc x+6=0

<=> x=5 hoặc x=-6

Vậy ..............

Tk mk nha