1 .tìm giá trị nhỏ nhất
B= 2x^2 -4x +7
Giup mk với
. a.Tìm giá trị nhỏ nhất của biểu thức:
A = x^2 -2x +9
B = x^2+ 6x - 3
C = (x -1 )(x - 3) + 9
b. Tìm giá trị lớn nhất của biểu thức:
E = -x^2 – 4x +7
F = 5 - 4x^2 + 4
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
Tìm giá trị nhỏ nhất của
2x2 + 4x +5
Mk giải được phần này rồi là 3 tại x = -1
Cô giáo mk hỏi : thế 1/2x2 + 4x + 5 có giá trị lớn nhất là 1/3 có đúng ko
\(2x^2+4x+5=2\left(x^2+2x+\frac{5}{2}\right)=2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]=2\left(x+1\right)^2+3\ge3\)
Min=3 khi x=-1
Còn phần cô giáo thì zầy nè
\(\frac{1}{2x^2+4x+5}=\frac{1}{2\left(x^2+2x+\frac{5}{2}\right)}=\frac{1}{2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]}=\frac{1}{2\left(x+1\right)^2+3}\)
muốn \(\frac{1}{2x^2+4x+5}\) lớn nhất thì \(2x^2+4x+5\)nhỏ nhất
\(2x^2+4x+5=2\left(x^2+2x+\frac{5}{2}\right)=2\left[\left(x^2+2.x.1+1\right)+\frac{3}{2}\right]=2\left(x+1\right)^2+3\ge3\)
Min=3 khi x=-1
Nếu cảm thấy đúng thìbạn ơ mk ko biết nhưng cho mk hỏi bạn giải đc bài này ko giúp mk đi
Tìm GTLN x2+10x-5
Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức:
a) A=x^2-2x+7
b)B=4x-4x^2
a) A=x^2-2x+7
=x2
-2x+1+6
=(x-1)2+6
vì (x-1)2 ≥ với mọi x nên
(x-1)2+6 ≥ 6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2 ≤ 0 nên
-(2x+1)2+1 ≤ 1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
:D
Có thể làm theo cách này :
a) A = x^2 - 2x + 7
=> A = x^2 - 2x . 1/2 + (1/2)^2 + 27/4
= [x^2 - 2x . 1/2 + (1/2)^2] + 27/4
= (x - 1/2)^2 + 27/4
mà (x - 1/2)^2 > 0
=> (x - 1/2)^2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2
:D
Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức:
a) A=x^2-2x+7
b)B=4x-4x^2
a) A=x^2-2x+7
=x2-2x+1+6
=(x-1)2+6
vì (x-1)2\(\ge\)với mọi x nên
(x-1)2+6\(\ge\)6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2\(\le\)0 nên
-(2x+1)2+1\(\le\)1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
a) A = x2 - 2x + 7
=> A = x2 - 2x . 1/2 + (1/2)2 + 27/4
= [x2 - 2x . 1/2 + (1/2)2] + 27/4
= (x - 1/2)2 + 27/4
mà (x - 1/2)2 > 0
=> (x - 1/2)2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2
1) Cho x+2y=1. Tìm giá trị nhỏ nhất của x2+2y2
2) Cho 4x-3y=7. Tìm giá trị nhỏ nhất của 2x2+5y2
tìm giá trị nhỏ nhất của biểu thức b=4x^2-4x-3|2x-1|+3
Lời giải:
$B=4x^2-4x-3|2x-1|+3=(4x^2-4x+1)-3|2x-1|+2$
$=(2x-1)^2-3|2x-1|+2=|2x-1|^2-3|2x-1|+2$
$=(|2x-1|-1,5)^2+\frac{1}{4}\geq \frac{1}{4}$
Vậy $B_{\min}=\frac{1}{4}$. Giá trị này đạt tại $|2x-1|=1,5$
$\Leftrightarrow x=\frac{5}{4}$ hoặc $x=\frac{-1}{4}$
a) tìm giá trị nhỏ nhất của biểu thức:
A=x^2-2x+9
B=x^2+6x-3
c=(x-1)(x-3)+9
b) tìm giá trị lớn nhất của biểu thức: D=-x^2-4x+7
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
hello, cần lm j z?
klkkkkkkkkkujoiyuj
3. Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7
Ai nhanh nhất mk tk nha
a ) A = 4x2 + 4x + 11
= 4x2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R
=> ( 2x + 1 )2 + 10 > 10
=> A > 10
=> Giá trị nhỏ nhất của A là 10
Dấu = xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)
b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x + 3 )
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
Đặt t = x2 + 5x
=> B = ( t - 6 ) ( t + 6 )
= t2 - 36
Nhận xét :
t2 > 0 với mọi t thuộc R
=> t2 - 36 > - 36
=> B > - 36
=> Giá trị nhỏ nhất của B là - 36
Dấu = xảy ra khi : t2 = 0
=> t = 0
mà t = x2 + 5x
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)
c ) C = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x thuộc R
( y - 2 )2 > 0 với mọi y thuộc R
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> C > 2
=> Giá trị nhỏ nhất của C là 2
Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2