Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cường Bảo
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 15:13

\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

Nguyễn Lê Phước Thịnh
28 tháng 9 2021 lúc 0:09

a: Ta có: \(-x^2+3x\)

\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

Góc nhỏ tâm hồn
Xem chi tiết
Góc nhỏ tâm hồn
23 tháng 11 2017 lúc 19:37

giúp mình với

Nguyễn Trung Kiên
26 tháng 9 2020 lúc 16:36

XIN LỖI ! MÌNH KHONG BIẾT

Khách vãng lai đã xóa
Toan Nguyen
Xem chi tiết

B = 2\(x^2\) - 4\(x\) - 8

B = 2(\(x^2\) - 2\(x\) + 4)  - 16

B = 2(\(x-2\))2 - 16 

Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)

⇒ 2(\(x-2\)) - 16 ≥ -16 ∀ \(x\)

Dấu bằng xảy ra khi  (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)

Vậy Bmin = -16 khi \(x=2\)

Tìm min của C biết:

C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17

C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1

C = (\(x\) - y)2 + 2(\(x\) - y) + 1  + (y2 - 8y + 16) 

C = (\(x-y+1\))2 + (y - 4)2 

Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)

 

 

D = \(x^2\) - \(xy\) + y2 - 2\(x\) - 2y

D=[\(x^2\)-2\(x\)\(\dfrac{y}{2}\)+(\(\dfrac{y}{2}\))2]-(2\(x\)-2\(\dfrac{y}{2}\)) +1 +(\(\dfrac{3}{4}\)y2-2.\(\dfrac{\sqrt{3}}{2}\)y .\(\sqrt{3}\) +3) - 4

D = (\(x-\dfrac{y}{2}\))2 - 2(\(x-\dfrac{y}{2}\))+ 1 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4

D = (\(x-\dfrac{y}{2}\) - 1)2 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4

Vì (\(x-\dfrac{y}{2}\) - 1)2 ≥  0 ∀ \(x\);y và (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 ≥ 0 ∀ y 

Vậy (\(x-\dfrac{y}{2}\) - 1)2 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4 ≥ - 4 ∀ \(x;y\)

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\\dfrac{\sqrt{3}}{2}y-\sqrt{3}=0\end{matrix}\right.\)

      ⇒ \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\\sqrt{3}.\left(\dfrac{1}{2}y-1\right)=0\end{matrix}\right.\)

  ⇒ \(\left\{{}\begin{matrix}x=1+\dfrac{1}{2}y\\\dfrac{1}{2}y=1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=1+1\\y=1:\dfrac{1}{2}\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vậy Dmin = - 4 khi (\(x;y\)) =(2; 2)

 

 

 

Nhím Sóc TV
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2021 lúc 12:17

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)

\(\Rightarrow\left(2x-1\right)^2< 3\) (1)

\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))

- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)

\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)

Nhím Sóc TV
Xem chi tiết
Toan Nguyen
Xem chi tiết
olm (admin@gmail.com)
29 tháng 9 2019 lúc 11:42

\(B=2x^2-4x-8=2\left(x^2-2x-4\right)\)

\(=2\left(x^2-2x+1-5\right)\)

\(=2\left[\left(x-1\right)^2-5\right]\)

\(=2\left(x-1\right)^2-10\ge-10\)

Vậy \(B_{min}=-10\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(F=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x+4=t\)

\(\RightarrowĐT=t\left(t+2\right)=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

hay \(\left(x^2+5x+5\right)^2-1\ge-1\)

Vậy \(F_{min}=-1\Leftrightarrow x^2+5x+5=0\)

\(\Leftrightarrow x^2+5x+\frac{25}{4}-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{5}{2}\\x=-\sqrt{\frac{5}{4}}-\frac{5}{2}\end{cases}}\)

olm (admin@gmail.com)
29 tháng 9 2019 lúc 11:48

\(G=4x-x^2=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\le4\)

Vậy \(G_{max}=4\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(H=25-x-5x^2=-5\left(x^2+\frac{x}{5}-5\right)\)

\(=-5\left(x^2+2x.\frac{1}{10}+\frac{1}{100}-\frac{501}{100}\right)\)

\(=-5\left[\left(x+\frac{1}{10}\right)^2-\frac{501}{100}\right]\)

\(=-5\left(x+\frac{1}{10}\right)^2+\frac{101}{20}\le\frac{101}{2}\)

Vậy \(H_{max}=\frac{101}{2}\Leftrightarrow x+\frac{1}{10}=0\Leftrightarrow x=-\frac{1}{10}\)

Hũ Thối Đậu
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 5 2022 lúc 9:30

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)

Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Nguyễn Thị Kim Huệ
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 21:00

\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)

\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Họ Và Tên
20 tháng 9 2021 lúc 21:02

\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)

dấu = xảy ra khi và chỉ khi y=4,x=3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 1:53

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B