Câu 1: Tìm x biết:
a)x : (2/3)4 = 2/3
b) (-5/3)2 . x = (-5/3)3
c) x2 -0.25 = 0
Bài 5. Tìm x ∈ Z biết:
a) (x – 2)(– 4 – x2) > 0
b) (x2 + 2)(x + 3) > 0
c) (x + 3)(x – 4) > 0. Mik sẽ tick nha
\(a,\Leftrightarrow\left(2-x\right)\left(x^2+4\right)>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\\ b,\Leftrightarrow x+3>0\Leftrightarrow x>-3\\ c,\Leftrightarrow\left[{}\begin{matrix}x< -3\\x>4\end{matrix}\right.\)
b: \(\Leftrightarrow x+3>0\)
hay x>-3
Tìm x biết rằng:
a) ( x 2 + 2x + 4)(2 - x) + x(x - 3)(x + 4) - x 2 + 24 = 0;
b) x 2 + 3 ( 5 − 6 x ) + ( 12 x − 2 ) x 4 + 3 = 0 .
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Câu 2. (1,0 điểm) Tìm biết:
a) 3x - 3 = 2( -1 + x)
b) x2 - 25 + ( x - 5 )2 = 0
b: \(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
Tìm x biết:
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
d) x2 - 4x + 5 = 0.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
2. a. \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\) và x + y + z = 52
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{52}{13}=4\)\((\)áp dụng tính chất dãy tỉ số bằng nhau \()\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=4\\\frac{y}{4}=4\\\frac{z}{6}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=12\\y=16\\z=24\end{cases}}\)
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
Tìm x, biết:
a) x 4 - 16 x 2 =0; c) x 8 + 36 x 4 =0;
b) ( x - 5 ) 3 - x + 5 = 0; d) 5(x - 2 ) - x 2 + 4 = 0.
Tìm x biết:
a) ( x – 3 ) 3 – ( x – 3 ) ( x 2 + 3 x + 9 ) + 9 ( x + 1 ) 2 = 15;
b) x(x – 5)(x + 5) – (x + 2)( x 2 - 2x + 4) = 3.
a) Rút gọn VT = 45x + 8. Từ đó tìm được x = 2 15 .
b) Rút gọn VT = -25x – 8. Từ đó tìm được x = − 11 25 .