Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Huy a2
Xem chi tiết
uzumaki naruto
19 tháng 6 2017 lúc 20:07

a) x^2 + x +1 = x^2 + 1/2x+1/2x + 1/4 + 3/4= x(x+1/2)+1/2(x+1/2) + 3/4

=( x+1/2)^2 + 3/4

Do (x+1/2)^2 lớn hơn hoặc  = 0 vs mọi x => (x+1/2)^2 + 3/4 >0 =>  x^2 + x +1 > 0 với mọi x

Dark Knight Rises
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
29 tháng 8 2017 lúc 13:46

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

rias gremory
3 tháng 9 2018 lúc 17:23

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

Tiểu Sam
Xem chi tiết
Ngô Chi Lan
23 tháng 8 2020 lúc 9:00

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
23 tháng 8 2020 lúc 9:00

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )

Khách vãng lai đã xóa
Xyz OLM
23 tháng 8 2020 lúc 9:04

a) Ta có : -4x2 - 4x - 2 = -(4x2 + 4x + 1) - 1 = -(2x + 1)2 - 1 < 0 (đpcm)

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15

= (x2 - 2x + 1) + (z2 - 6z + 9) + (4y2 + 8y + 4) + 1

= (x - 1)2 + (z - 3)2 + 4(y + 1)2 + 1 > 0 (đpcm)

Khách vãng lai đã xóa
Đỗ Hàn Thục Nhi
Xem chi tiết
tthnew
28 tháng 6 2019 lúc 8:41

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

Hương Nguyễn Quỳnh
18 tháng 9 2019 lúc 18:14

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

Hương Nguyễn Quỳnh
18 tháng 9 2019 lúc 20:13

b. x2 + x + 1

= x2 + 2.x.\(\frac{1}{2}\)+ (\(\frac{1}{2}\))2 \(\frac{1}{4}\) + 1

= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Vì (x + \(\frac{1}{2}\))2 ≥ 0 ∀ x ⇒ (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\frac{3}{4}\) ∀ x

Vậy (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) ≥ 0 hay x2 + x + 1 > 0 ∀ x.

Phùng Như Ngọc
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
27 tháng 8 2020 lúc 14:54

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

Khách vãng lai đã xóa
Hoàng Huy
Xem chi tiết
Thi, Khanh Pham
Xem chi tiết
Ngô Chi Lan
23 tháng 8 2020 lúc 20:56

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

Khách vãng lai đã xóa
Khánh Ngọc
23 tháng 8 2020 lúc 21:01

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

Khách vãng lai đã xóa
FL.Han_
23 tháng 8 2020 lúc 21:58

\(1.A=x^2+2x+2=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)

hay\(\left(x+1\right)^2+1>0\forall x\)

\(2.B=x^2+2x.3+9+2=\left(x+3\right)^2+2\)

CM tương tự A

\(3.C=4x^2+4x-2=\left(2x+1\right)^2-2\)

\(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-2\ge-2\forall x\)(có thể >0)

4,5 Cm tương tự

    

Khách vãng lai đã xóa
Diệu Anh Hoàng
Xem chi tiết
15 1 9 13
2 tháng 9 2018 lúc 23:10

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

Songoku
13 tháng 7 2019 lúc 17:00

sử dụng hằng đẳng thức 1.2

Đnh
23 tháng 4 2020 lúc 16:00

Chứng minh rằng:

a) A=9x^2-6x+11>0 với mọi x

b) (x^2-2xy+y^2)+1>0 với mọi x,y

c) (x-x^2+1)<0 với mọi x 

Khách vãng lai đã xóa
Son Le
Xem chi tiết
Son Le
3 tháng 11 2019 lúc 20:34

cho mình cảm ơn trước

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 11 2019 lúc 21:23

\(-x^2+x-1=--\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)

\(f\left(x\right)=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\)

\(f\left(x\right)_{min}=5\) khi \(x=2\)

Khách vãng lai đã xóa