Bài 1 : Các số sau là nguyên tố hay hợp tố
312 ; 213 ; 435 ; 417 ; 3737 ; 4141
Bài 2 : Gọi P là tập họp các số nguyên tố. điền kí hiệu vào chỗ chấm
43....P 93.....p 15......N P......N
Số nguyên tố . Hợp số . Bảng số nguyên tố
Sách bài tập toán 6 bài 148
Các số sau là số nguyên tố hay hợp số ?
1431 ; 635 ; 119 ; 73
Giải giúp mk nha
73 là số nguyên tố
Các số 1431 ; 635 ; 119 là hợp số vì chúng có các ước 3,5,7
Bài 1 Kiểm tra xem các số sau là số nguyên tố hay hợp số:409;337;881;79507
Bài 2 Tìm STN p sao cho p+2;p+4 đều là số nguyên tố
Ai giải đc mik tặng like
1/Chép vào vở bài tập những câu sau đây với đầy đủ các từ hay cụm từ thích hợp sau. Hóa trị, nguyên tử, nguyên tố, nhóm nguyên tử, khả năng liên kết, phân tử.
"Hóa trị là con số biểu thị …. của ... nguyên tố này (hay ...) với ... nguyên tố khác. Hóa trị của một ... (hay ...) được xác định theo ... của H chọn là đơn vị và ... của O là hai đơn vị".
Bài 5:
Tìm số tự nhiên a sao cho: a; a + 1 và a + 2 đều là các số nguyên tố?
Bài 6: Tổng (hiệu) sau là số nguyên tố hay hợp số? a) 5 . 6 . 7 + 8 . 9 ;
b) 5 . 7 . 9 . 11 – 2 . 3 . 7
Bài 7:
Phân tích các số 78; 450 ra thừa số nguyên tố bằng cách “rẽ nhánh” và “theo cột dọc”.
Bài 8:
Biết 2 700 = 22 . 33 . 52. Hãy viết các số 270 và 900 thành tích các thừa số nguyên tố.
Bài 6:
a: Là hợp số
b: Là hợp số
c1
p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp
Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.
3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)
Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.
Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.
c2
a) 5 . 6 . 7 + 8 . 9
ta có :
5 . 6 . 7 chia hết cho 3
8 . 9 chia hết cho 3
=> 5 . 6 . 7 + 8 . 9 chia hết cho 3 và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số
b 5 . 7 . 9 . 11 - 2 . 3 . 7
ta có :
5 . 7 . 9 . 11 chia hết cho 7
2 . 3 . 7 chia hết cho 7
=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số
c3
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
Bài 1 : Tìm 1 STN biết rằng số đó bằng tổng của 2 số nguyên tố và c~ là hiệu của 2 cố nguyên tố
Bài 2 Các số sau là số nguyên tố hay hợp số ? Vì sao
C=1010101
D=1!+2!+3!+4!+5!+....+100!
E=3.5.7.9.11-44
Bài1:Các số sau là nguyên tố hay hợp số
a) 123456789 + 729
b) 5.7.8.9.11-132
Bài 2: Tìm số nguyên tố sao cho
a)P+2 và P+4 cũng là số nguyên tố
b)P+10 và P+14 cũng là số nguyên tố
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
1:cho các số sau :37;57;67;77;87
a)số nào là nguyên tố ? vì sao?
b)số nào là hợp số ? vì sao?
2:tổng hiệu sau là số nguyên tố hay hợp số :
a)17.19+23.29
b)5.8-3.13
c)143.144.145-145.144.143
3:cho các số sau:504,900
a)Hãy phân tích các số ra thừa số nguyên tố?
b)Tìm các ước nguyên tố của các số đó
c)Tìm tập hợp các ước của các số đó
4:Có hai số tự nhiên liên tiếp có tích bằng 1260 không?
5:tìm 3 số tự nhiên liên tiếp có tích bằng 6840
6:Một khu đát hình vuông có diện tích là 1156 m2 .Tính độ dài mội cạnh của khu đất này ?
7:số 7056 có phải là số chính phương không/
Bài 1:
a) Các số nguyên tố là 37;67 vì mỗi số này chỉ có hai ước là 1 và chính nó
b) Các số là hợp số là 57;77 và 87 vì mỗi số này có nhiều hơn 2 ước
Câu 2:
a) \(17\cdot19+23\cdot29\) là hợp số
b) \(5\cdot8-3\cdot13\) không là số nguyên tố cũng không là hợp số
c) \(143\cdot144\cdot145-145\cdot144\cdot143\) không là số nguyên tố cũng không là hợp số
Câu 4:
Gọi hai số tự nhiên liên tiếp là a;a+1
Theo đề, ta có phương trình: a(a+1)=1260
\(\Leftrightarrow a^2+a-1260=0\)
\(\Leftrightarrow a^2+36a-35a-1260=0\)
\(\Leftrightarrow\left(a+36\right)\left(a-35\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-36\left(loại\right)\\a=35\left(nhận\right)\end{matrix}\right.\)
Vậy: Hai số cần tìm là 35;36
Câu 6:
Độ dài mỗi cạnh của khu đất là:
\(\sqrt{1156}=34\left(m\right)\)
Bài 1: Các số sau là số nguyên tố hay hợp số
a = 1 x 3 x 5 x 7 x ... x 13 + 20
b = 147 x 247 x 347 - 13
c = 13579 + 97531 + 12345
d = 246246 + 122123 + 369369
Bài 2: Tìm số nguyên tố để 5.a + 14 là số nguyên tố < 40
Bài 2:
\(\Leftrightarrow5a+14\in\left\{2;3;5;7;11;13;17;19;23;29;31;37\right\}\)
\(\Leftrightarrow5a\in\left\{5;15\right\}\)
hay a=3(vì a là số nguyên tố)
bài 9:Tìm số nguyên tố p sao cho:
a)p+16;p+38 cũng là các số nguyên tố
b)p+28;p+44 cũng là các số nguyên tố
c)p+26;p+42;p+48'p+74 là các số nguyên tố
bài 10:a)tổng 3 số tự nhiên liên tiếp là số nguyên tố hay hợp số?
b)tổng 3 số tự nhiên lẻ liên tiếp là số nguyên tố hay hợp số?
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số