Chứng minh \(\left(2n+5\right)^2-25\) chi hết cho 4 với mọi n € Z
chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên
C/M Rằng:\(\left(2n+5\right)^2-25\) chia hết cho 4,với mọi n thuộc Z
\(\left(2n+5\right)^2-25=\left(2n+5\right)^2-5^2=\left(2n+5-5\right)\left(2n+5+5\right)=2n\left(2n+10\right)=4n^2+20n\)
Vì: \(\left\{{}\begin{matrix}4n^2⋮4\\20n⋮4\end{matrix}\right.\)\(\Rightarrow4n^2+20n⋮4\left(đpcm\right)\)
Ta có: A=(2n+5)2−25
\(2^2.n^2+25-25=4.n^2⋮4\)
⇒A⋮4(đpcm)
Chứng minh : Với mọi n thuộc Z ta có :
a) \(n^2\left(n-1\right)\)chia hết cho 12
b)\(n^2\left(n^4-1\right)\) chia hết cho 60
c) \(n^5-n\) chia hết cho 30
d) \(2n\left(16-n^4\right)\) chia hết cho 30.
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
chứng minh với mọi số nguyên n thì biểu thức:
a) \(\left(4n+3\right)^2-25\)chia hết cho 8
b) \(\left(2n+3\right)^2-9\)chia hết cho 4
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Chứng minh rằng \(n^4+7\left(7+2n^2\right)\) chia hết cho 64 với mọi n là số lẻ.
Chứng minh:
\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]\) chia hết cho 6 với mọi \(n\in Z\)
\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]=\left[\left(n^2+2n\right)\left(n+1\right)\right]=\left[n\left(n+2\right)\left(n+1\right)\right]\)
ta có n(n+1)(n+2) là 3 số tự nhiên liên tiếp mà 3 số tự nhiên liên tiếp luôn chia hết cho 6
Chứng minh rằng \(\left(5n-2\right)^2-\left(2n-5\right)^2\)luôn chia hết cho 21 với mọi số nguyên n
Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)
\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)
\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\)luôn chia hết cho 5 với mọi số nguyên n
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5