BT1: Tính nhanh:
4) \(A=-\dfrac{3}{20}-\dfrac{3}{200}-\dfrac{3}{2000}-\dfrac{3}{20000}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
BT1: Tính nhanh
2) \(\left(7-\dfrac{4}{3}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\)
\(=7-\dfrac{4}{3}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(=\left(7-6-5\right)-\left(\dfrac{4}{3}-\dfrac{4}{3}+\dfrac{5}{3}-\dfrac{1}{3}\right)-\left(\dfrac{5}{4}-\dfrac{7}{4}\right)\)
\(=-4-\dfrac{4}{3}-\left(\dfrac{-1}{2}\right)\)
\(=-4-\dfrac{4}{3}+\dfrac{1}{2}\)
\(=-\dfrac{24}{6}-\dfrac{8}{6}+\dfrac{3}{6}\)
\(=-\dfrac{32}{6}+\dfrac{3}{6}\)
\(=-\dfrac{29}{6}\)
BT1: Tính nhanh
3) \(\dfrac{1}{2}-\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{-3}{-2^3}\right)\)
4) \(\dfrac{1}{12}.\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)
\(\dfrac{1}{12}\). \(\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)
=\(\dfrac{1}{12}.\left(\dfrac{37}{39}+\dfrac{2}{39}\right)+\dfrac{1}{4}\)
=\(\dfrac{1}{12}.1+\dfrac{1}{4}\)
=\(\dfrac{13}{12}+\dfrac{1}{4}\)
=\(\dfrac{16}{12}\)
BT1: Tính nhanh:
3) \(\left(\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{6}\right)^2+1\dfrac{1}{3}\)
\(=\left(\dfrac{4}{12}-\dfrac{3}{12}\right)^2+\left(\dfrac{3}{6}-\dfrac{1}{6}\right)^2+\dfrac{4}{3}\)
\(=\dfrac{1}{144}+\dfrac{1}{9}+\dfrac{4}{3}=\dfrac{209}{144}\)
BT1: Tính nhanh
1) \(\left(\dfrac{-4}{9}+\dfrac{3}{7}\right):1\dfrac{1}{15}+\left(\dfrac{4}{7}-\dfrac{5}{9}\right):1\dfrac{1}{15}\)
2) \(3\dfrac{2}{9}.15\dfrac{4}{7}-3\dfrac{2}{9}.8\dfrac{1}{7}+3\dfrac{2}{9}.\dfrac{15}{7}-3\dfrac{2}{9}.\dfrac{1}{7}\)
1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)
\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)
2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)
BT1: Tìm x, biết
2)\(2+\dfrac{5}{7}+\left(\dfrac{\dfrac{3}{19}+\dfrac{3}{23}-\dfrac{3}{28}}{\dfrac{5}{19}+\dfrac{5}{23}-\dfrac{5}{28}}\right).x=\dfrac{20}{7}\)
2)
\(2+\dfrac{5}{7}+\left(\dfrac{\dfrac{3}{19}+\dfrac{3}{23}-\dfrac{3}{28}}{\dfrac{5}{19}+\dfrac{5}{23}-\dfrac{5}{28}}\right)\cdot x=\dfrac{20}{7}\\ \left[\dfrac{3\cdot\left(\dfrac{1}{19}+\dfrac{1}{23}-\dfrac{1}{28}\right)}{5\cdot\left(\dfrac{1}{19}+\dfrac{1}{23}-\dfrac{1}{28}\right)}\right]\cdot x=\dfrac{20}{7}-\dfrac{5}{7}-2\\ \dfrac{3}{5}x=\dfrac{15}{7}-2\\ \dfrac{3}{5}x=\dfrac{1}{7}\\ x=\dfrac{5}{21}\)
BT1: Tính
3) \(\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}}\)
\(\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}}=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}\right)}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}\)
\(=1\)
BT1: Tính
4) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{264}}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}+\dfrac{5}{8}\)
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}\right)}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}\)
\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
bài này có trong sách Nâng cao và Phát triển bạn nhé
BT1: Tính nhanh
5) \(B=1\dfrac{1}{2}.1\dfrac{1}{3}.1\dfrac{1}{4}....1\dfrac{1}{99}\)
\(B=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times...\times\dfrac{100}{99}\)
\(B=\dfrac{3.4.5.....100}{2.3.4.....99}\)
\(B=\dfrac{100}{2}\)
\(B=50\)