Tìm x :
2007 . x . ( x - 2006 / 7 ) = 0
Tìm x thuộc Q
a, 2007.x(x.2006/7)=0
b, 5.(x-2)+3x(2-x)=0
a)\(2007x\left(x-\frac{2006}{7}\right)=0\)
\(\Rightarrow x\left(x-\frac{2006}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-\frac{2006}{7}=0\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}0\\\frac{2006}{7}\end{cases}}\)
b) \(5.\left(x-2\right)+3x\left(2-x\right)=0\)
\(=5\left(x-2\right)-3x\left(x-2\right)=0\)
\(=\left(x-2\right)\left(5-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5-3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\3x=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{3}\end{cases}}\)
|x+2006/2007|+|2008/2009-y|=0
Tìm x, y
Ta có: \(\hept{\begin{cases}|x+\frac{2006}{2007}|\ge0;\forall x,y\\|\frac{2008}{2009}-y|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow|x+\frac{2006}{2007}|+|\frac{2008}{2009}-y|\ge0;\forall x,y\)
Do đó : \(\Rightarrow|x+\frac{2006}{2007}|+|\frac{2008}{2009}-y|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+\frac{2006}{2007}|=0\\|\frac{2008}{2009}-y|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
Vậy ...
tìm giá trị các đa thức sau
\(A=x^{15}+3x^{14}+5\) biết x+3=0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\) biết x= -3
a) \(A=x^{15}+3x^{14}+5\)
\(=x^{14}\left(x+3\right)+5\)
\(=x^{14}.0+5\)
= 5
b) x = -3 => x + 3 = 0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(=\left(x^{2006}.0+1\right)^{2007}\)
\(=1^{2007}=1\)
\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)
\(A=x^{14}.\left(x+3\right)+5\)
\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)
\(A=0+5\)
\(A=5\) \(\text{Vậy }A=5\text{ với x+3=0}\)
\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)
\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)
\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=\left(x^{2006}.0+1\right)^{2007}\)
\(B=\left(0+1\right)^{2007}\)
\(B=1^{2007}\)
\(B=1\) \(\text{Vậy }B=1\text{ với x=-3}\)
Tìm x biết : \(\frac{\left(2006-x\right)^2+\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}{\left(2006-x\right)^2-\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}=\frac{19}{49}\)
Đặt x -2006 = y
pt <=> \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)
<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)
<=> \(49y^2-49y+49=57y^2-57y+19\)
<=> \(8y^2-8y-30=0\)
<=> \(4y^2-4y+15=0\)
Giải tiếp nha
Tìm x biết
(x + 2006/2007) ^6 =0
(x+2006/2007)6=0
=>x+2006/2007=0
x=0-2006/2007
x=-2006/2007
cho \(A=\lim\limits_{x\rightarrow+\infty}\dfrac{mx+2006}{x+\sqrt{x^2+2007}}\). tìm m để A=0
\(\lim\limits_{x\rightarrow+\infty}\dfrac{m+\dfrac{2006}{x}}{1+\sqrt{1+\dfrac{2007}{x^2}}}=\dfrac{m}{2}\)
\(A=0\Leftrightarrow\dfrac{m}{2}=0\Rightarrow m=0\)
Tìm x để thỏa mãn đẳng thức: x+6/2006+x+5/2007+x+4/2008=X+2006/6+x+2007/5+x+2008/4
P(x) = ( 5x - 1 )2007
P(x) = a2007x2007 + a2006x2006 + ... + a1x + a0
Tim x.
a. 2007.x{x-2006/7}=0
b. 5{x-2}+3x{2-x}=0
{ viet cach lam gium minh }