b) x^2+2xy–6y–9
c) x^3+x^2–6x
Phân tích đa thức thành phân tử:
a,6x-6y
b,2xy+3z+6y+xz
c,x^2+6x+9-y^2
d,9x-x^3
e,x^2-xy+x-y
a) \(6x-6y=6\left(x-y\right)\)
b)\(2xy+3x+6y+xz\)
\(=\left(2xy+xz\right)+\left(6y+3z\right)\)
\(=x\left(2y+z\right)+3\left(2y+z\right)\)
\(=\left(2y+z\right)\left(x+3\right)\)
c)\(x^2+6x+9-y^2\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x-y+3\right)\left(x+y+3\right)\)
d) \(9x-x^3\)
\(=x\left(9-x^2\right)\)
\(=x\left(3-x\right)\left(3+x\right)\)
e)\(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
a, 6x - 6y = 6( x-y )
b, 2xy + 3z + 6y + xz
= ( 2xy + 6y ) + ( 3z + xz )
= 2y( x + 3 ) + z ( 3 + x )
= 2y( 3 + x ) + z ( 3 + x )
= ( 3 + x ) ( 2y + z )
c, x2 + 6x + 9 - y2 = ( x2 + 6x + 9 ) - y2
= ( x + 3 )2 - y2
= ( x + 3 - y ) ( x + 3 + y )
d , 9x - x3 = x ( 9 - x2 )
= x ( 3 - x ) ( 3 + x )
e, x2 - xy + x - y =( x 2 - xy ) + ( x - y )
= x ( x - y ) + ( x - y )
= ( x - y ) ( x + 1 )
\(a,6x-6y=6\left(x-y\right)\)
\(b.2xy+3z+6y+xz\)
\(2y\left(x+3\right)+z\left(x+3\right)\)
\(\left(2y+z\right)\left(x+3\right)\)
\(c,x^2+6x+9-y^2\)
\(\left(x+3\right)^2-y^2\)
\(\left(x+3-y\right)\left(x+3+y\right)\)
\(d,9x-x^3\)
\(x\left(9-x^2\right)\)
\(x\left(3^2-x^2\right)=x\left(3-x\right)\left(3+x\right)\)
\(e,x^2-xy+x-y\)
\(x\left(x+1\right)-y\left(x+1\right)\)
\(\left(x+1\right)\left(x-y\right)\)
Cho x +y =-9 .Giá trị của b/thức ;D=x^2+2xy+y^2-6x-6y-15
\(D=x^2+2xy+y^2-6x-6y-15\)
\(=\left(x+y\right)^2-6\left(x+y\right)-15=-9^2-6\cdot\left(-9\right)-15=120\)
cho các số x và y thỏa mãn x^3-3x^2+6x+1=0;y^3-6y^2+15y-9=0.Tính A=x^2+y^2+y-x-2xy
phân tích đa thức thành nhân tử
a)x2 + 2xy - 6y -9
b)x3 + x2 - 6x
mong sự giúp đỡ
câu a là x2-32 +2xy-6y= [x-3].[x+3]+2y.[x-3]=[x-3].[x+3+2y] câu b là x.[x2 +x-6]=x.[x2-22+x-2]=x.[x-2].[x+3]
1. Cho x+y=9 Tính
A= x^2+2xy+y^2-6x-6y-5
Phân tích đa thức sau thành nhân tử
a) x2 + 2xy - 6y - 9 b) x3 + x2 - 6x
a)\(x^2+2xy-6y-9=x^2-9+2y.\left(x-3\right)=\left(x-3\right)\left(x+3\right)+2y.\left(x-3\right)\)
\(=\left(x-3\right).\left(x+3+2y\right)\)
b) \(x^3+x^2-6x=x^3-6x+9+x^2-9\)
\(=x^3+3x^2-3x^2-9x+3x+9+\left(x-3\right)\left(x+3\right)\)
\(=x^2.\left(x+3\right)-3x.\left(x+3\right)+3.\left(x+3\right)+\left(x-3\right).\left(x+3\right)\)
\(=\left(x+3\right).\left(x^2-3x+3+x-3\right)\)
\(=\left(x+3\right).\left(x^2-2x\right)=x.\left(x+3\right).\left(x-2\right)\)
a, \(x^2+2xy-6y-9\)
\(=\left(x^2+2xy+y^2\right)-\left(y^2+6y+9\right)\)
\(=\left(x+y\right)^2-\left(y-3\right)^2\)
\(=\left(x+2y-3\right)\left(x+3\right)\)
b, \(x^3+x^2-6x\)\(=x\left(x^2+3x-2x-6\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
Cho x + y = -9. Tính \(D=x^2+2xy+y^2-6x-6y-15\)
\(D=x^2+2xy+y^2-6x-6y-15\)
\(=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)-15\)
\(=\left(x+y\right)^2-6\left(x+y\right)-15\)
\(=\left(x+y\right)\left(x+y-6\right)-15\)
\(=\left(-9\right)\left(-9-6\right)-15\)
\(=120\)
Cho x+y=9. Giá trị biểu thức D=x2+2xy+y2-6x-6y-15.
D=x2+2xy+y2-6x-6y-15
D=(x^2+2xy+y^2)-(6x+6y)-15
D=(x+y)^2 - 6(x+y) - 15
D=(x+y)(x+y-6-15)
D= 9 . 9 - (-21)
D= 102
GPTNN:
a) \(x^2+y^2+5x^2y^2+60=37xy\)
b) \(x\left(x^2-6x+12\right)=y^2+27\)
c) \(x^2+2y^2-2xy+2x-6y+1=0\)