Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 21:06

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 0:07

a: TXĐ: D=R\{1}

b: TXĐ: D=[-2;2]\{0}

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 0:23

h: ĐKXĐ: |x+1|-|x-2|<>0

=>|x+1|<>|x-2|

=>x-2<>x+1 và x+1<>-x+2

=>2x<>1

=>x<>1/2

g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0

=>x>-2 và x>-1 và x<>2; x<>-2

=>x>-1; x<>2

f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x

=>3x<>6 và -1<=x<=7/2

=>x<>2 và -1<=x<=7/2

03. Kiều Thái Bảo
28 tháng 1 2023 lúc 8:44

f. 

\(x+1>0\) và \(7-2x>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)

g.

\(x+1>0\) và \(x^2-4\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)

 

Adu vip
Xem chi tiết
Khánh ly
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:42

a: TXĐ: D=R

b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)

\(f\left(0\right)=\sqrt{0+1}=1\)

\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)

\(f\left(2\right)=\sqrt{3}\)

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:48

TXĐ: \(D=\varnothing\)

Phùng Minh Phúc
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:06

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)