Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Anh
Xem chi tiết
Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

mai thủy
Xem chi tiết
Akai Haruma
15 tháng 7 2021 lúc 19:28

Lời giải:

a. Vì $ABC$ cân tại $A$ nên $AC=AB=15$

Theo tính chất tia phân giác: $\frac{AD}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}$

$\Leftrightarrow \frac{AD}{AC}=\frac{3}{5}$
$\Leftrightarrow \frac{AD}{15}=\frac{3}{5}$

$\Rightarrow AD=9$ 

$DC=AC-AD=15-9=6$

b. Tính D' gì hả bạn? D'C hay D'B, D'A?

Theo tính chất phân giác ngoài:

$\frac{D'C}{D'A}=\frac{BC}{BA}=\frac{10}{15}=\frac{2}{3}$

$\Leftrightarrow \frac{D'C}{D'C+CA}=\frac{D'C}{D'C+15}=\frac{2}{3}$

$\Rightarrow 3D'C=2(D'C+15)$

$\Rightarrow D'C=30$ (cm)

 

Akai Haruma
15 tháng 7 2021 lúc 19:30

Hình vẽ:

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 23:50

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AD}{15}=\dfrac{DC}{10}\)

mà AD+DC=AC=15cm(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{15}=\dfrac{DC}{10}=\dfrac{AD+CD}{15+10}=\dfrac{15}{25}=\dfrac{3}{5}\)

Do đó:

AD=9cm; DC=6cm

Nguyễn Tấn Đạt
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
Mạnh
Xem chi tiết
bui van trong
16 tháng 2 2021 lúc 20:19

) Chứng minh Δ EBF đồng dạng Δ EDC Tam giac EDC dong dang tam giac ADF(g,g,g)=> Goc AFD = goc ECD Ma AFD = 90 - goc B  => Goc EDC = Goc BXet tam giac vuong EBF va tam giac vuong EDC ta co:+) Goc A1 = goc E = 90+) Goc B = Goc EDC+) Goc BFE = Goc C=> Δ EBF đồng dạng Δ EDC

Khách vãng lai đã xóa
Khánh Linh
Xem chi tiết
Tae Tae
Xem chi tiết
Hồ Hoàng Trúc Vân
4 tháng 9 2019 lúc 15:36

Bn tự vẽ hình nha

Ta có:\(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)

\(\widehat{ABD}=\widehat{DBC}\)(BD là đg phân giác của\(\widehat{ABC}\))

\(\Rightarrow\widehat{ABD}=\widehat{DBC}=\frac{\widehat{ABC}}{2}=\frac{60^o}{2}=30^o\)

\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)

\(\widehat{ACE}=\widehat{ECB}\)(AC là đg phân giác của\(\widehat{ACB}\))

\(\Rightarrow\widehat{ACE}=\widehat{ECB}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)

Xét\(\Delta BIC\)có:\(\widehat{IBC}+\widehat{BIC}+\widehat{ICB}=180^o\)(ĐL tổng 3 góc của 1\(\Delta\))

hay\(30^o+\widehat{BIC}+20^o=180^o\)

\(\Rightarrow\widehat{BIC}=180^o-30^o-20^o=130^o\)

Ta lại có:\(\widehat{BIC}+\widehat{CID}=180^o\)(2 góc kề bù)

hay\(130^o+\widehat{CID}=180^o\)

\(\Rightarrow\widehat{CID}=180^o-130^o=50^o\)

Nguyên Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 2:32

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

=>AD=ED

b: BA=BE

DA=DE
=>BD là trung trực của AE

AD=DE
DE<DC

=>AD<DC

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng