Lời giải:
a. Vì $ABC$ cân tại $A$ nên $AC=AB=15$
Theo tính chất tia phân giác: $\frac{AD}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}$
$\Leftrightarrow \frac{AD}{AC}=\frac{3}{5}$
$\Leftrightarrow \frac{AD}{15}=\frac{3}{5}$
$\Rightarrow AD=9$
$DC=AC-AD=15-9=6$
b. Tính D' gì hả bạn? D'C hay D'B, D'A?
Theo tính chất phân giác ngoài:
$\frac{D'C}{D'A}=\frac{BC}{BA}=\frac{10}{15}=\frac{2}{3}$
$\Leftrightarrow \frac{D'C}{D'C+CA}=\frac{D'C}{D'C+15}=\frac{2}{3}$
$\Rightarrow 3D'C=2(D'C+15)$
$\Rightarrow D'C=30$ (cm)
a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{15}=\dfrac{DC}{10}\)
mà AD+DC=AC=15cm(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{15}=\dfrac{DC}{10}=\dfrac{AD+CD}{15+10}=\dfrac{15}{25}=\dfrac{3}{5}\)
Do đó:
AD=9cm; DC=6cm