Bài 2: Chứng minh các biểu thức sau luôn âm với mọi giá trị của biến
c) -x² - 6x - 10
d) -x² + 4xy - 5y² - 8y - 18
chứng minh -x^2+4xy-5y^2-8y-18 luôn âm với mọi x
tìm giá trị nhỏ nhất của x^2+4xy+2y^2-22y+173
\(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)
\(\Rightarrow dpcm\)
a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)
Vì \(\left(x-2y\right)^2\ge0\forall x,y\); \(\left(y+4\right)^2\ge0\forall y\); \(2>0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)
\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)
\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )
Bài 4: Chứng minh rằng các biểu thức sau luôn luôn âm với mọi giá trị của biến a) M=-x² + 6x – 12 b) N= - 3x-x2 – 4 c)P =- 3x2+ 6x+20 d) Q= - 4x2 + 8x- 9y² – 6y – 35
Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến:
a) (-1/4)x^2 + x - 2
b) (1-2x)(x-1) - 5
c) -3x^2 - 6x - 9
cảm ơn các bạn nhiều
\(-\frac{1}{4}x^2+x-2\)
\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)
\(=-\left(\frac{1}{2}x-1\right)^2-1\)
Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)
Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến
\(\left(1-2x\right)\left(x-1\right)-5\)
\(=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6\)
\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)
Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)
Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến
Chứng minh biểu thức sau luôn âm với mọi giá trị của x
A= -x^2 + 6x-10
A = -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 2.x.3 + 9 + 1)
= -(x2 - 2.x.3 + 32 +1)
= -[(x - 3)2 + 1]
Mà (x - 3)2 + 1 \(\ge\)1
=> -[(x - 3)2 + 1] \(\le\)-1 \(< \)0
Vậy giá trị của A luôn âm với mọi giá trị của x.
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
Chứng minh biểu thức sau có giá trị luôn âm với mọi x
B= -10-x^2-6x
\(B=-10-x^2-6x\)
\(\Rightarrow B=-\left(x^2+6x+10\right)\)
\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)
\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)
=> Đpcm
B=\(-10-x^2-6x\)
B=\(-x^2-6x-9-1\)
B=\(-\left(x^2+6x+9\right)-1\)
=\(-\left(x+3\right)^2-1\)
Ta có : \(\left(x+3\right)^2\ge0\forall x\)
\(-\left(x+3\right)^2\le0\)
\(-\left(x+3\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
Ta có B = -x2 - 6x - 10
= -x2 - 6x - 9 - 1
= -(x + 3)2 - 1 \(\le\) - 1 < 0
=> B < 0 với mọi x
chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá tri của biến
-11-(x-1)*(x-2)
-11 - ( x - 1 ) *( x - 2 )
= -11 - ( x^2 - 2x - x + 2 )
= - 11 - x^2 + 2x + x - 2
= -11 - x^2 + 3x - 2
= - 13 - x^2 + 3x
Với x < 3
=> x^2 < I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Với x = 3 hoặc x = -3
=> x^2 = I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Tương tự với x > 3
Vậy -11 - ( x - 1 )( x - 2 ) luôn âm với mọi x
chứng minh rằng các biểu thức sau luôn luôn có giá trị âm với mọi giá trị của biến: 3x-7-x^2
giúp mik với mik cần rất gấp
\(A=-x^2+3x-7\)
\(=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)
\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)
bài 1 CMR các biểu thức sau luôn âm vs mọi giá trị của biến :
a, \(-x^2+2x-7\)
b, \(-x^2-6x-10\)
c,\(-x^2-3x-5\)
d, \(-x^2+4xy-5y^2-8y-18\)
a, \(-x^2+2x-7=-\left(x^2-2x+1\right)+1-7=-\left(x-1\right)^2-6\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\) => đpcm
b, \(-x^2-6x-10=-\left(x^2+6x+9\right)+9-10=-\left(x+3\right)^2-1\)
Vì \(-\left(x+3\right)^2\le0\Rightarrow-\left(x+3\right)^2-1< 0\) => đpcm
c, \(-x^2-3x-5=-\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{9}{4}-5=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)
Vì \(-\left(x+\dfrac{3}{2}\right)^2\le0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\) => đpcm
d, \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)\right]-1\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2\right]-1=-\left(x-2y\right)^2-\left(y+4\right)^2-1\)
Vì \(-\left(x-2y\right)^2\le0;-\left(y+4\right)^2\le0\Rightarrow-\left(x-2y\right)^2-\left(y+4\right)^2-1< 0\)
=> đpcm