Cho tam giác ABC vuông ở A, đường cao AH, vẽ HE vuông góc vs AB, HF vuông góc vs AC. Gọi M là trung điểm của BC. Chứng minh AF/CH =BH/AC
Cho tam giác ABC vuông ở A, đường cao AH, vẽ HE vuông góc vs AB, HF vuông góc vs AC. Gọi M là trung điểm của BC. Chứng minh AF/CH=BH/AC
hinh tu ve
cm: aehf la hinh chu nhat vi co 4 goc vuong
suy ra af=eh
\(\Delta BEHdd\Delta BAC\)
\(\frac{EH}{AC}=\frac{BH}{AB}< =>\frac{EH}{BH}=\frac{AC}{AB}\)
tg_bac dd tg_ahc
\(\frac{AC}{AB}=\frac{CH}{AC}\)
suy ra
\(\frac{AF}{BH}=\frac{CH}{AC}\)(do af=eh)
\(\frac{AF}{CH}=\frac{BH}{AC}\)
a. Qua C dung duong thang vuong AC tai C cat NH tai I. De thay tg vuong CAM = tg vuong ICN (AM=CN;goc ACM=goc CIN) =>IC=CA => ACIB la hinh vuong Goi J la trung diem IC. BJ giao NI tai ok De thay BJ // CM => ok la trung diem IH va BK vuong goc IN (Do CM vuong goc IN tai H) => BK vua la duong cao, vua la trung tuyen cua tg BHI =>tg BHIcan tai B =>BH=BI ma ACIB la hinh vuong => BH=BI=BA => ABH can tai B b. De thay tu giac MBIH noi tiep (B=H=ninety) =>goc BIM = goc BHM (cung chan BM) (a million) Mat khac vi HE vuong goc AB => HE // AC => goc EHM = goc ACM (goc dong vi) (2) Hon nua tg AMC = tg BMI => goc BIM = goc ACM (3) Tu (a million), (2), (3) => goc BHM = goc EHM => HM la phan giac goc BHE
a) + b) : wa dễ b tự c/m nhé
c) ta có: tam giac AHB ~ tam giac AEH (g.g) => AH / AE = AB / AH => AH^2 = AE.AB
tam giac AHC ~ tam giac AFH (g.g) => AH / AF = AC / AH => AH^2 = AF.AC
=> AE.AB = AF.AC => dpcm
d) vì AEHF là h.c.n => HF // AE hay HM // AB
xét tam giác BNC có: HM // BN => HM / BN = CM / CN (ĐL Ta-lét)
xét tam giác ANC có: MF // AN => MF / AN = CM / CN (ĐL Ta-let)
=> HM / BN = MF / AN
mà HM = MF => BN = AN (1)
vì AEHF là h.c.n có I la giao điểm của EF và AH => AH = IH (2)
xét tam giác AHB và từ (1), (2) => NI // BH => NI // BC => dpcm
5 * nha b...tks y
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của BC. Biết BC=10cm a)Tính AM b)Vẽ HE vuông góc với AB;HF vuông góc với AC(E thuộc AB;F thuộc AC) Chứng minh rằng : AH=EF c)Vẽ HN//EF(N thuộc AC). Chứng minh rằng: FA=FN d)Chứng minh rằng: AM vuông góc với HN Giúp mình với cần gấp ạ
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)
cho tam giác ABC vuông tại A , có đường cao AH . Vẽ HE vuông góc với AB , vẽ HF vuông góc với AC ( E ϵ AB, F ϵ AC) . Gọi I là trung điểm của BC. a) chứng minh rằng EF = AH
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm
a) Tính BC,AH, góc B,góc C
b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC
c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho tam giác ABC có AB= 10cm, BC=12cm,kẻ AH vuông góc vs BC tại H
a)Chứng minh tam giác ABH=ACH
b) Chứng minh H là trung điểm của BC . Tính AH?
c)Vẽ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh tam giác BHE =tam giác CHF
d)Trên tia đối của tia BC lấy điểm M bất kì . Chứng minh AM > AC
1. Xét hai tam giác vuông ΔABHΔABH và ΔACHΔACH có:
AHAH cạnh chung
AB=AC=10cmAB=AC=10cm (gt)
Vậy ΔABH=ΔACHΔABH=ΔACH (cạnh huyền- cạnh góc vuông)
HC=HBHC=HB (hai cạnh tương ứng) hay H là trung điểm BC
2. BH=HC=BC2=122=6BH=HC=BC2=122=6 cm
Áp dụng định lí Py-ta-go vào ΔΔ vuông ABHABH có:
AH2=AB2−HB2=102−62=64⇒AH=8AH2=AB2−HB2=102−62=64⇒AH=8 cm
3. Xét ΔAKEΔAKE và ΔAKHΔAKH có:
AKAK chung
ˆAKE=ˆAKH=90oAKE^=AKH^=90o (do HK⊥ACHK⊥AC)
KE=KHKE=KH (do giả thiết cho K là trung điểm của HE)
⇒ΔAKE=ΔAKH⇒ΔAKE=ΔAKH (c.g.c)
⇒AE=AH⇒AE=AH (hai cạnh tương ứng) (1)
Cách khác để chứng minh AE=AH
Do ΔAHEΔAHE có K là trung điểm của HE nên AK là đường trung tuyến,
Có HK⊥ACHK⊥AC hay AK⊥HEAK⊥HE nên AK là đường cao
ΔAHEΔAHE có AK là đường trung tuyến cũng là đường cao nên ΔAHEΔAHE cân đỉnh A nên AE=AH.
4. Ta có HI⊥ABHI⊥AB hay AI⊥DH⇒AI⊥DH⇒ AI là đường cao của ΔADHΔADH
Mà IH=ID nên AI cũng là đường trung tuyến ΔADHΔADH
Vậy ΔAEHΔAEH cân tại A
Nên AD=AH (2)
Từ (1) và (2) suy ra AE=AD hay ΔAEDΔAED cân tại A.
5. Xét 2 tam giác vuông ΔAHIΔAHI và ΔAHKΔAHK có:
AH chung
ˆIAH=ˆKAHIAH^=KAH^ (hai góc tương ứng của ΔABH=ΔACHΔABH=ΔACH)
⇒ΔAHI=ΔAHK⇒ΔAHI=ΔAHK (cạnh huyền- góc nhọn)
⇒HI=HK⇒2HI=2HK⇒HD=HE⇒HI=HK⇒2HI=2HK⇒HD=HE
Mà ta có AD=AEAD=AE (cmt)
⇒AH⇒AH là đường trung trực của DE⇒AH⊥DEDE⇒AH⊥DE mà AH⊥BCAH⊥BC
⇒DE//BC⇒DE//BC
6. Để A là trung điểm ED thì DA⊥AHDA⊥AH mà ΔADHΔADH cân (cmt) nên ΔADHΔADH vuông cân đỉnh A.
Có AIAI là đường cao, đường trung tuyến nên AIAI cũng là đường phân giác nên
ˆDAI=ˆHAI=90o2=45oDAI^=HAI^=90o2=45o
⇒ˆIAH=ˆBAH=ˆCAH=45o⇒IAH^=BAH^=CAH^=45o (do ΔABH=ΔACHΔABH=ΔACH)
⇒ˆBAC=ˆBAH+ˆCAH=90o⇒BAC^=BAH^+CAH^=90o và ΔABCΔABC cân đỉnh A
⇒ΔABC⇒ΔABC vuông cân đỉnh A.
Vậy nếu ΔABCΔABC vuông cân đỉnh A thì AA là trung điểm của DE.
Cho tam giác ABC vuông ở A, đường cao AH. Từ H kẻ đường thẳng vuông góc vs AC và AB, cắt AC ở F, cắt AB ở E. I là trung điểm của BC. Chứng minh:
a) EF=AH
b) AI vuông góc vs EF
c) M là trung điểm của HB, N là trung điểm của HC. Chứng minh tứ giác BMFN là hình thang vuông
vẽ hình thì cô thúy bày rồi
chứng minh
a,ta có
HE song song với AC\(\Rightarrow\)AF song song với HE
HFsong song với AB(GT)\(\Rightarrow\)HF song song với AE
\(\Rightarrow\)tứ giác FHEA là hình bình hành
mà \(\widehat{A}\)=90 Độ
\(\Rightarrow\)hình bình hành FHEA là hình chữ nhật
\(\Rightarrow\)EF=AH
mình chỉ biết đến đó thôi
cho tam giác ABC vuông tại A. Đường cao AH. Từ H vẽ HD vuông góc với AB tại D, vẽ HE vuông góc với AC tại E. Trên tia đối tia AC lấy điểm F sao cho AF = AE. K là điểm đối xứng của B qua A. Gọi M là trung điểm của AH. Chứng minh CM vuông góc với HK
Cho tam giác ABC vuông ở A. Vẽ AH vuông góc với BC. tại H hạ các đường vuông góc với AB,AC theo thứ tự tại M, N Trên tia đối của tia MH, NH lấy các điểm E,F sao cho M,N lần lượt là trung điểm của HE, HF
Chứng minh a) AE=AF, b) E, F, A thẳng hàng, c) BE// CF
Tam giác ABC có AB = 3; AC = 4; BC = 5; đường cao AH. Vẽ HE vuông góc với AB; HF vuông góc với AC; I trung điểm BC.
a) Tính AH, EF
b) Chứng minh EF vuông góc với AI
c) Gọi M trung điểm BH, N trung điểm CH. Hỏi EMFN là hình gì? Tính chu vi, diện tích hình đó?