(2x+2).(2x+2)-(3x-1).(3x+1)
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
Bài 2 Tìm x biết 1, (2x-2).(3x+1)-(3x-2).(2x-3)=5 2,(1-3x).(3x-5)-(2x-4)(2-3x)=x-6 3,(2x-1).(4x^2+2x+1)-(2x+1)(4x^2-2x+1)=5x+6 Giúp tớ với
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
b1:
[4+2x]=-3x [3x-1]+2=x
[x+15]+1=3x [2x-5]+x=2
b2:
[2x-5]=x+1 [3x-2]-1=x
[3x-7]=2x+1 [2x-1]+1=x
Giải PT
1 ) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
2) 4x2 -1 = (2x + 1)(3x – 5)
3) (x + 1)2 = 4(x2 – 2x + 1)
4) 2x3+ 5x2 – 3x = 0
5) {2x{ = 3x – 2
6) x + 15 = 3x – 1
7) 2 – x = 0,5x – 4
1) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0
⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0
⇔ (2x + 1).(3x – 2 – 5x + 8) = 0
⇔ (2x + 1)(6 – 2x) = 0
⇔\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)
Vậy.....
2) 4x2 -1 = (2x + 1)(3x - 5)
⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0
⇔ (2x+1)(2x-1-3x+5)=0
⇔ (2x+1)(4-x)=0
⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)
Vậy...
3)
(x + 1)2 = 4(x2 – 2x + 1)
⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0
⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0
⇔ - 3x2 + 10x – 3 = 0
⇔ (- 3x2 + 9x) + (x – 3) = 0
⇔ -3x (x – 3)+ ( x- 3) = 0
⇔ ( x- 3) ( - 3x + 1) = 0
⇔\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy......
4) 2x3+5x2-3x=0
⇒2x3-x2+6x2-3x=0
⇒(2x3-x2)+(6x2-3x)=0
⇒x2(2x-1)+3x(2x-1)=0
⇒(x2+3x)(2x-1)=0
⇒ hoặc x2+3x=0⇒x(x+3)=0⇒hoặc x=0 hoặc x=-3
hoặc 2x-1=0⇒x=0,5
Vậy ...
5)2x=3x-2
⇒2x-3x=-2
⇒-x=-2
⇒x=2
6) x+15=3x-1
⇒x-3x=-1-15
⇒-2x=-16
⇒x=8
7)2-x=0,5x-4
⇒-x-0,5x=-4-2
⇒-1,5x=-6
⇒x=4
1) |2x - 1| = 5
2) |2x - 1| = |x + 5|
3) |3x + 1| = x - 2
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
tìm x
1) (3x-2)(9x^2+6x+4)-(2x-5)(2x+5)=(3x-1)^3-(2x+3)^2+9x(3x-1)
2) (2x+1)^3-(3x+2)^2=(2x-5)(4x^2+10x+25)+6x(2x+1)-9x^2
1-3x/2x + 3x-2/2x-1 + 2-3x/4x2-2x
\(2x;2x-1;4x^2-2x=2x\left(2x-1\right)\)
\(MTC=2x\left(2x-1\right)\)
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{4x^2-2x}\)
\(=\dfrac{\left(1-3x\right).2x\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{\left(3x-2\right).2x}{\left(2x-1\right).2x}+\dfrac{2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{2x\left(1-3x\right)\left(2x-1\right)+2x\left(2x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-8x^2+4x+4x^2-4x+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2-3x+2}{2x\left(2x-1\right)}\)
#AEZn8
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{4x^2-2x}=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\dfrac{2-3x}{2x\left(2x-1\right)}=\dfrac{-6x^2+5x-1}{2x\left(2x-1\right)}+\dfrac{6x^2-4x}{2x\left(2x-1\right)}+\dfrac{2-3x}{2x\left(2x-1\right)}=\dfrac{\left(-6x^2+6x^2\right)+\left(5x-4x-3x\right)+\left(-1+2\right)}{2x\left(2x-1\right)}=\dfrac{-2x}{2x\left(2x-1\right)}=\dfrac{-1}{2x-1}\)
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Rut gon cac bieu thuc sau:
1) A= (x2+3x+1)2 + (3x-1)2 - 2(x2+3x+1)(3x-1)
2) B= (3x2+3x+1)(3x3-3x+1) - (3x3+1)2
3) C= (2x2+2x=1)(2x2 - 2x+1) - (2x2+1)2