Cho các số a, b, c thỏa mãn 1 \(\ge\)a, b, c \(\ge\)0. Chứng minh rằng :
\(a+b^2+c^3-ab-bc-ca\le1\)
Cho a,b,c thỏa mãn 1\(\ge\)a,b,c\(\ge\)0. chứng minh rằng \(a+b^2+c^3-ab-bc-ca\le1\)
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
cho a,b,c là các số thực không âm thỏa mãn : a+b+c=1 .
Chứng minh rằng : ab+bc+ca-3abc \(\ge\)1/4
Cho \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c\le1\).Chứng minh rằng \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{87}{2}\)
TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?
Anh xem sai chỗ nào ạ?
Áp dụng BĐT Cô-si, ta có
\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(1)
và \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(vì \(a+b+c\le1\)) (2)
và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)(3)
Kết hợp (2) và (3) ta có \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(4)
Kết hợp (1) và (4) ta có \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{\frac{8\left(ab+bc+ca\right)^3}{27^2}}}=\sqrt[3]{\frac{27.27^2}{8\left(ab+bc+ca\right)^3}}\)
\(=\frac{27}{2\left(ab+bc+ca\right)}\)
Từ đó \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)
Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(vì \(a+b+c\le1\))
Lại có \(\frac{1}{ab+bc+ca}\ge\frac{3}{\left(a+b+c\right)^2}\ge3\)(cũng vì \(a+b+c\le1\))
Do đó ta được
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{2}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)
\(\ge9+\frac{23.3}{2}=\frac{87}{2}\)
Vậy BĐT được chứng minh.
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\). Chứng minh rằng \(a+b+c\ge ab+bc+ca\)
\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\)
\(\Leftrightarrow2\ge\dfrac{a+b}{a+b+1}+\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}=\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+a+b}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)^2+b+c}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)^2+c+a}\)
\(\Rightarrow2\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca+a+b+c}\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)
\(\Rightarrow\)đpcm
Cho a,b,c là các số thực không âm thỏa mãn a2+b2+c2+abc=4 .Chứng minh rằng :
\(abc+2\ge ab+bc+ca\ge abc\)
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
Cho a,b,c thoả mãn \(1\ge a,b,c\ge0\)
Chứng minh rằng \(a+b^2+c^3-ab-bc-ca\le1\)
Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)
\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)
\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)
\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)
Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)
Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)
Do\(1\ge a,b,c\ge0\)
\(\Rightarrow b\ge b^2,c\ge c^3\)
Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)
Vì \(1\ge a,b,c\ge0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà \(abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2)
Từ (1) và (2) => đpcm
Cho 3 số a,b,c >0 thỏa mãn ab+bc+ca=1
Chứng minh rằng:\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
https://olm.vn/hoi-dap/detail/239526218296.html
Sử dụng phân tích tuyệt vời của Ji Chen:
\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Hãy xem phương pháp Buffalo-Way giải quyết nó!
Viết BĐT lại thành: \(\left(ab+bc+ca\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\ge\frac{25}{4}\)
Giả sử \(a\ge b\ge c\) và đặt \(a=c+u+v,b=c+v\left(u,v\ge0\right)\). Sau khi quy đồng, bất đẳng thức trở thành:
128 c^6+4 u^5 v+19 u^4 v^2+30 u^3 v^3+15 u^2 v^4+c^5 (256 u+512 v)+c^4 (192 u^2+832 u v+832 v^2)+c^3 (96 u^3+528 u^2 v+1008 u v^2+672 v^3)+c^2 (40 u^4+224 u^3 v+488 u^2 v^2+528 u v^3+264 v^4)+c (8 u^5+60 u^4 v+152 u^3 v^2+168 u^2 v^3+100 u v^4+40 v^5) \(\ge0\) (hiển nhiên đúng)
P/s: Khúc cuối dài quá gõ công thức bị tràn hết màn hình nên đành gõ ngoài, thông cảm! Nhớ bài này có một cách dùng dồn biến mà nghĩ không ra.
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\ge\frac{3}{4}\)\(\ge\)3/4
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1