Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng lê
Xem chi tiết
Phan Nhị
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Nguyễn Vũ
3 tháng 8 2019 lúc 21:05

C,(x^10+ax+b) chia cho x^2-1 dư 2x+1

=>x^10+ax+b=P(x)*(x^2-1)+2x+1

thay lần lượt x=1 và x=-1 vào cả 2 vế bạn sẽ tìm được a,b

Cố gắng làm nốt nhé

nam phạm
Xem chi tiết
Sky Sky
23 tháng 12 2019 lúc 17:39

Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?

Khách vãng lai đã xóa
Lê Vũ Anh Thư
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Trịnh Ngọc Hân
18 tháng 9 2018 lúc 22:54

Violympic toán 8

Mình giải câu b) trước, câu a) để mai mình làm sau nha!

Edogawa Conan
Xem chi tiết
hattori heiji
5 tháng 2 2018 lúc 20:11

Gọi thương của x3 +ax2 +bx +c chia cho x+2 ; x+1; x-1 lần lượt là

f(x),q(x) ,p(x) ta đc

x3 +ax2 +bx +c =(x+2).f(x)+8 (1)

x3 +ax2 +bx +c =(x+1).q(x)+8 (2)

x3 +ax2 +bx +c =(x-1).p(x)+8 (3)

Các đẳng thức (1),(2),(3) luôn đúng

*Với x=-2 từ (1) ta đc

-8+4a-2b +c=8

=>4a-2b+c=16 (*)

*Với x=-1 từ (2) ta đc

-1+a-b+c=8

=> a-b+c=9 (**)

*Với x=1 từ (3) ta đc

1+a+b+c=8

=> a+b+c=7 (***)

từ (*) ; (**) ; (***) ta đc

a=2 . b=-1 , c=6

thanh vu
Xem chi tiết
Nhóc_Siêu Phàm
10 tháng 12 2017 lúc 22:10

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1