Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
🍀Cố lên!!🍀
Xem chi tiết
vvvvvvvv
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2017 lúc 18:28

Chọn D

·        Bổ trợ kiến thức: Để cho bài toán được dễ hiểu hơn các em có thể nghĩ hướng giải một cách đơn giản như sau, đầu tiên là các em dùng kiến thức về min, max của hàm số để tìm các GTLN và GTNN của hàm số   ( kể cả có tham số hay không có tham số ), sau đó giải quyết min > –1 vậy là hoàn thành xong bài toán.

 

Bước khó khăn của bài toán trên là bước tìm min của

 

do gặp phải tham số k nhưng nếu dùng các kĩ thuật sơ cấp để xử lí và dễ tìm thấy được ,

khi đó ta chỉ cần tìm k sao cho min y > –1 vậy là ta chọn được đáp án đúng.

 

vvvvvvvv
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 23:38

Tham khảo:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 2 2018 lúc 6:25

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2017 lúc 11:08

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2019 lúc 16:19

vvvvvvvv
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 7 2021 lúc 21:00

a)\(-1\le sinx\le1\)

\(\Leftrightarrow1\ge-sinx\ge-1\)

\(\Leftrightarrow4\ge3-sinx\ge2\) \(\Leftrightarrow16\ge\left(3-sinx\right)^2\ge4\)\(\Leftrightarrow17\ge\left(3-sinx\right)^2+1\ge5\)

\(\Leftrightarrow17\ge y\ge5\)

\(y_{min}=5\Leftrightarrow sinx=1\)\(\Leftrightarrow\)\(x=\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

\(y_{max}=17\Leftrightarrow\)\(sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

b)\(y=\left(sin^2x+cos^2x\right)^2-2.sinx^2cos^2x\)\(=1-\dfrac{1}{2}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{1}{2}.sin^22x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow1\ge1-\dfrac{1}{2}.sin^22x\ge\dfrac{1}{2}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{2}\)

\(y_{min}=\dfrac{1}{2}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=-1\\sin2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

c)\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1-3sin^2x.cos^2x=1-\dfrac{3}{4}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{3}{4}.sin^22x\ge-\dfrac{3}{4}\)

\(\Leftrightarrow1\ge1-\dfrac{3}{4}.sin^22x\ge\dfrac{1}{4}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{4}\)

\(y_{min}=\dfrac{1}{4}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

Vậy...

Hồng Phúc
1 tháng 7 2021 lúc 21:09

a, Đặt \(t=sinx\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=\left(3-t\right)^2+1=t^2-6t+10\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(1\right)=5\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(-1\right)=17\)

b, \(y=sin^4x+cos^4x=1-2sin^2x.cos^2x=1-\dfrac{1}{2}sin^22x\)
Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{1}{2}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{2}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

c, \(y=sin^6x+cos^6x\)

\(=sin^4x+cos^4x-sin^2x.cos^2x\)

\(=1-3sin^2x.cos^2x\)

\(=1-\dfrac{3}{4}sin^22x\)

Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{3}{4}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{4}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)