Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thanh Tịnh
Xem chi tiết
Yim Yim
Xem chi tiết
Phan Văn Hiếu
28 tháng 9 2017 lúc 16:12

https://olm.vn/hoi-dap/question/1008119.html

vào đây mà tham khảo

Phan Văn Hiếu
28 tháng 9 2017 lúc 16:18

bạn tham khảo bài này nè

https://olm.vn/hoi-dap/question/1008119.html

Secret
28 tháng 9 2017 lúc 21:49

Câu hỏi của Nguyễn Bá Minh - Toán lớp 9 - Học toán với OnlineMath

Tiến_Về_Phía_Trước
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 11 2019 lúc 22:14

thanh niên này chắc VIP dài quá:))

** Max 

\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)

Theo bunhia ta có:

\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)

*** Min

Giả sử \(1\ge y\ge x\ge z\)

Ta có:

\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Mặt khác:

\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)

Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)

Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)

Khi đó 

\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.

Khách vãng lai đã xóa
tth_new
21 tháng 11 2019 lúc 6:56

Em có cách này cho phần min nhưng không chắc lắm..

Min:

Giả sử \(x\ge y\ge z\)

\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)

\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)

\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.

Khách vãng lai đã xóa
Lưu Quý Lân
Xem chi tiết
pham trung thanh
11 tháng 10 2018 lúc 16:12

c) theo bunhia ta có:

\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)

\(\Rightarrow VT\le\sqrt{6}\)

Lưu Quý Lân
13 tháng 10 2018 lúc 20:13

bạn giải hẳn ra đc k?

Nguyễn Huỳnh Minh Thư
Xem chi tiết
lê thị thu huyền
Xem chi tiết
pham thi thu trang
8 tháng 10 2017 lúc 17:15

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\\\sqrt{z-2}-1=0\end{cases}}\)

pham thi thu trang
8 tháng 10 2017 lúc 17:17

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\\\sqrt{z-2}-1=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

vậy \(S=x+y=1+2=3\)

Phan PT
Xem chi tiết
Hoàng Tử Hà
6 tháng 2 2021 lúc 16:17

Thử nhé

Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)

Thay vo P ta duoc \(P=4.\sqrt{2021}\)

----------------------------------------------------------

\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)

Cauchy-Schwarz:

\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)

\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)

\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)

Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)

\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 16:37

Nếu đề bài yêu cầu Max thì đây nhé :)

Áp dụng bđt Bunhiacopxki , ta có \(A^2=\left(1.\sqrt{x}+1.\sqrt{y}+1.\sqrt{z}\right)^2\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]=3\left(x+y+z\right)=3\)

\(\Rightarrow\left|A\right|\le\sqrt{3}\Rightarrow0\le A\le\sqrt{3}\)

Vậy MAX A = \(\sqrt{3}\) khi x = y = z = 1/3

Bài này không tìm được MIN nhé.

Nguyễn Thị Thùy
Xem chi tiết