bình phuognw 2 vé rồi thu gọn là được
bình phuognw 2 vé rồi thu gọn là được
Cho x+y+z=\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) trong đó x,y,z là các số dương. Chứng minh rằng:x=y=z
Cho ba số thực dương x, y, z thỏa mãn x+y+z+2=xyz . Chứng minh rằng:
x+y+z+6\(\ge\)2(\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\))
cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Tìm cặp số (x;y) với x,y ϵ Z+ thỏa mãn
x+y2+9=2*(\(\sqrt{x-3}\)+2*\(\sqrt{y^{ }2^{ }+z}\))
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z\le3\end{matrix}\right.\)
Tìm GTNN của A= \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\)
Cho x, y, z là các số thực dương thỏa mãn x2 + y2 + z2 = \(\dfrac{3}{7}\)
Chứng minh rằng : \(\sqrt{8+14x}+\sqrt{8+14y}+\sqrt{8+14z}\)\(\le\)\(3+3\sqrt{7}\)
Cho a,b,c và x,y,z khá nhau và khác 0 thỏa mãn :
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\). Tính M=\(\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}}\)
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z\le3\end{matrix}\right.\). Tìm giá trị nhỏ nhất của biểu thức: A=\(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\).
Mình sắp thi học kì rồi TT_TT. Các bạn mau trả lời giùm mình nha. Cảm ơn nhiều.
Bài 1: Cho tam giác ABC có 3 đường cao AD; BE; CF đồng quy tại H
a. CMR \(AH.DH=BH.EH=CF.FH\)
b. Biết HA=HD, SABC= 10cm2. Tính SBHC
Bài 2: Cho hình hộp chữ nhật \(ABCD.A^,B^,C^,D^,\) \(AB=5cm,AC=7cm,A^,C=12cm\). Tính thể tích và diện tích xung quanh của hình hộp chữ nhật đó
Bài 3: Giai phương trình
a. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=24\)
b. \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)=4\)
Bài 4: Giai phương trình
a. \(\dfrac{16}{\sqrt{x-6}}+\dfrac{4}{\sqrt{y-2}}+\dfrac{256}{\sqrt{z-1750}}+\sqrt{x-6}+\sqrt{y-2}+\sqrt{z-1750}=44\)
b. \(x\sqrt{y-1}+y\sqrt{x-1}=xy\)