Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khoa
Xem chi tiết
Lương Thị Vân Anh
8 tháng 2 2023 lúc 22:20

Ta có \(3^{2^{4n}+1}\) + 2 = 316n + 1 + 2 = 316n . 3 + 2 = ( 34 )4n . 3 + 2

= 814n . 3 + 2 = ( 814 )n . 3 + 2 = ( ...1 )n . 3 + 2 = ( ...1 ) . 3 + 2

= ( ...3 ) + 2 = ( ...5 )

Vì số có chữ số tận cùng là 5 chia hết cho 5 nên ( \(3^{2^{4n}+1}\) + 2 ) ⋮ 5

Nguyễn Hoàng Danh
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 12:09

Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:

$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên 

Do đó $A$ chẵn hay $A\vdots 2(*)$

Mặt khác:

$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$

$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên 

$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$

Và:

$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$

do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên 

$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$

Do đó: 

$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$

Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)

 
 

Uchiha Itachi
Xem chi tiết
Akai Haruma
30 tháng 8 2020 lúc 12:14

Lời giải:

Cần bổ sung điều kiện $n$ là số nguyên dương. Nếu $n=0$ thì $A=11$ không là hợp số bạn nhé.

Ta có:

$2^{4n+1}=16^n.2\equiv 1^n.2\equiv 2\pmod 5$

Do đó $2^{4n+1}$ có dạng $5k+2$ với $k\in\mathbb{N}$

Mà $2^{4n+1}$ chẵn nên $5k+2$ chẵn. Do đó $k$ chẵn. Đặt $k=2t$ với $t\in\mathbb{N}$ thì $2^{4n+1}=10t+2$

$A=2^{2^{4n+1}}+7=2^{10t+2}+7$

$=(2^{10})^t.4+7$

Theo định lý Fermat nhỏ:

$2^{10}\equiv 1\pmod {11}$

$\Rightarrow A=(2^{10})^t.4+7\equiv 1^t.4+7\equiv 11\equiv 0\pmod {11}$

Vậy $A\vdots 11$. Với $n\in\mathbb{N}^*$ dễ thấy $A>11$. Do đó $A$ là hợp số (đpcm)

Linh Vu
2 tháng 8 2023 lúc 15:44

cái này toán lớp 6 mà, lớp 9 đâu ra

 

Xem chi tiết
Hà Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2021 lúc 19:12

Gọi d là UCLN(4n+1;12n+7)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\12n+7⋮d\end{matrix}\right.\)

\(\Leftrightarrow3\left(4n+1\right)-12n-7⋮d\)

\(\Leftrightarrow12n+3-12n-7⋮d\)

\(\Leftrightarrow-4⋮d\)

\(\Leftrightarrow d\inƯ\left(-4\right)\)

\(\Leftrightarrow d\in\left\{1;-1;2;-2;4;-4\right\}\)(1)

Ta có: 4n+1 và 12n+7 là hai số lẻ 

nên ƯCLN(4n+1;12n+7) là số lẻ

hay d là số lẻ

\(\Leftrightarrow d⋮2̸\)(2)

Từ (1) và (2) suy ra \(d\in\left\{1;-1\right\}\)

hay d=1

\(\LeftrightarrowƯCLN\left(4n+1;12n+7\right)=1\)

\(\Leftrightarrow\dfrac{4n+1}{12n+7}\) là phân số tối giản(đpcm)

Hoa Thiên Cốt
Xem chi tiết
Nguyễn Linh Chi
2 tháng 11 2018 lúc 22:47

Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5

Vì 16n có số tận cùng là 6;  =>16n.2 có  số tận cùng là 2

81n có số tận cùng là 1

=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n

Ton9(0:2)ne^n+)u
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 22:21

a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)

hay \(n\in\left\{0;1;4\right\}\)

Nguyễn Hoàng Minh
11 tháng 11 2021 lúc 22:21

\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)

Nguyễn Thị Ngọc
Xem chi tiết
zZz Phan Cả Phát zZz
10 tháng 11 2016 lúc 21:57

Nếu n chẵn thì cái tổng chia hết cho 2

Nếu n lẻ thì

Phân tích nhân tử

Ta có : \(n^4+4^n=\left(n^2\right)^2+\left(2^n\right)^2+2n^2+2^n=\left(n^2+2^n\right)^2-n^2+2^{n+1}=\left(n^2+2^n-n.2^{\frac{n+1}{2}}\right)\left(n^2+2^n+n.2^{\frac{n+1}{2}}\right)\)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh \(n^2+2^n-n.2^{\frac{n+1}{2}}\ge1\)

Tương đương với \(n^2+2^{n+1}-2n.2^{\frac{n+1}{2}}+n^2\ge2\) ( nhân 2 cho 2 vế )

\(BĐT\Rightarrow\left(n-2^{\frac{n+1}{2}}\right)^2+n^2\ge2\)đúng với n lẻ và n ≥ 3 

Vậy, ta có điều phải chứng minh 

Nguyễn Thị Ngọc
10 tháng 11 2016 lúc 22:16

bạn à 4n không phải n^4

Quang Trần Minh
Xem chi tiết