Cho a/b=c/d
Chứng minh a) 3a+2c/3b-2d=a-5c/b-5d
b) (a-b)2/(c-d)2=a2+b2/c2+d2
1. Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\). CMR:
a) \(\dfrac{3a+5c}{3b+5d}\) = \(\dfrac{a-2c}{b-2d}\).
b) \(\dfrac{a^2-b^2}{ab}\) = \(\dfrac{c^2-d^2}{cd}\).
c) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}\) = \(\dfrac{\left(c+d\right)^2}{c^2+d^2}\).
d) \(\left(\dfrac{a+b}{c+d}\right)^3\) = \(\dfrac{a^3+b^3}{c^3+d^3}\).
Gíup mình với cảm ơn các bạn rất nhiều!!!!!!!!!
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)
\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)
b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)
c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)
\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)
giúp mình câu d) luôn nha phong
cảm ơn phong nha
Cho a/b=c/d.Chứng minh;
a)a-b/2a=c-d/2c
b)5a-3b/3a+2b=5c-3d/3c+2d
a )\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{2a}{2c}\)
\(\frac{a-b}{c-d}=\frac{2a}{2c}\Rightarrow\frac{a-b}{2a}=\frac{c-d}{2c}\) ( đpcm)
b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) ( đpcm )
Cho tỉ lệ thức : a/b = c/d chứng minh rằng :
a) A - B /2a = C - D / 2c ; A + B / B = C+ D /D
b) 5a - 3b / 3a+2b = 5c - 3d / 3c+2d
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
Cho tỉ lệ thức a/b=c/d.Chứng minh
a)3a+5b/3a-5b=3c+5d/3c-5d
b) 2a + 3b/ 2a - 3b= 2c+3d/2c-3d
c)ab/cd=a^2-b^2/c^2-d^2
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
Cho tỉ lệ thức :a/b=c/d
Chứng minh rằng:(a+b)2/(c+d)2=a2 +b2/c2+d2
Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường
\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\), với a , b , c , d ≠ 0 có thể suy ra:
A. \(\dfrac{3a}{2c}\)=\(\dfrac{2d}{3b}\)
B. \(\dfrac{3b}{a}\)=\(\dfrac{3d}{c}\)
C. \(\dfrac{5a}{5d}\)=\(\dfrac{b}{c}\)
D. \(\dfrac{a}{2b}\)=\(\dfrac{d}{2c}\)
`#3107.101107`
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Ta có:
\(\dfrac{3b}{a}=\dfrac{3d}{c}\Rightarrow3bc=3da\Rightarrow bc=da\)
Vậy, từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ta có thể suy ra tỉ lệ thức \(\dfrac{3b}{a}=\dfrac{3d}{c}\)
\(\Rightarrow B.\)