Tìm Max:\(A=-x+\sqrt{x-2}+2\cdot\sqrt{x+1}+10\)
Giải các phương trình sau
a) \(-x^2+4\cdot x+1=2\cdot\sqrt{2\cdot x+1}\)
b) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
c) \(5\cdot x^2-2\cdot x+1=\left(4\cdot x-1\right)\cdot\sqrt{x^2+1}\)
d) \(\left(2\cdot x-1\right)\cdot\sqrt{10-4\cdot x^2}=5-2\cdot x\)
e) \(\sqrt{2\cdot x-1}-\sqrt{x+1}=2\cdot x-4\)
f) \(\sqrt{x^2-2\cdot x}+\sqrt{2\cdot x^2+4\cdot x}=2\cdot x\)
câu b đk x>= -1/4
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm Max \(E=x\sqrt{1-y^2}+y\sqrt{9-z^2}+z\sqrt{10-x^2}\)
Cho: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\left(x\ge0\right)\)
a/ Rút gọn P
b/ Tìm min, max
điều kiện xác định : \(x\ge0\)
a) ta có : \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\Leftrightarrow P=\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\Leftrightarrow P=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}}{3}\)
\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
b) ta có : \(P=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\Leftrightarrow3Px-\left(3P+4\right)\sqrt{x}+3P=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow\left(3P+4\right)^2-4\left(3P\right).\left(3P\right)\ge0\) \(\Leftrightarrow-27P^2+24P+16\ge0\)
\(\)\(\Leftrightarrow-27\left(x-\dfrac{4}{3}\right)\left(x+\dfrac{4}{9}\right)\ge0\Leftrightarrow-\dfrac{4}{9}\le x\le\dfrac{4}{3}\)
\(\Rightarrow P_{max}=\dfrac{4}{3}\) khi \(\sqrt{x}=\dfrac{-b}{2a}=\dfrac{3P+4}{6P}=\dfrac{3.\dfrac{4}{3}+4}{6.\dfrac{4}{3}}=1\) \(\Leftrightarrow x=1\)
\(\Rightarrow P_{min}=\dfrac{-4}{9}\) khi \(\sqrt{x}=\dfrac{-b}{2a}=\dfrac{3P+4}{6P}=\dfrac{3\left(\dfrac{-4}{9}\right)+4}{6\left(\dfrac{-4}{9}\right)}=-1\left(L\right)\)
ta nhận xét thấy \(P=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\ge0\)
\(\Rightarrow P_{min}=0\) khi \(x=0\)
vậy......................................................................................................................................
Giải phương trình:
a)\(3\cdot\left(x^2-x+1\right)=8\cdot\left(x^3+x\right)\)
b) \(x^2+2x\cdot\sqrt{x-\frac{1}{x}}=3x+1\)
c) \(x^2+\sqrt[4]{x^4-x^2}=2x+1\)
d) \(\sqrt{x-1}+\sqrt{3-x}+4x\cdot\sqrt{2x}=x^3+10\)
e) \(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
Tìm GTNN:
\(A=\sqrt{\left(x-2\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+5}\)
\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)
\(A=\sqrt{\left(x-2\right)\left(x-1\right)x\left(x+1\right)+5}\)
\(=\sqrt{\left(x^2-x-2\right)\left(x^2-x\right)+5}\)
Đặt \(t=x^2-x\) ta đc:
\(A=\sqrt{\left(t-2\right)t+5}=\sqrt{t^2-2t+5}\)
\(=\sqrt{\left(t-1\right)^2+4}\ge\sqrt{4}=2\)
Dấu = khi \(t=1\Leftrightarrow x^2-x=1\Leftrightarrow x=\pm\frac{1}{2}+\frac{\sqrt{5}}{2}\)
Vậy....
b)\(B=\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}\)
\(=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}\)
\(=\left|x-2\right|+\left|x+3\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2\right|+\left|x+3\right|=\left|x-2\right|+\left|-x-3\right|\ge\left|x-2+\left(-x\right)-3\right|=5\)
Dấu = khi \(\left(x-2\right)\left(x+3\right)\ge0\)\(\Rightarrow-3\le x\le2\)
\(\Rightarrow\hept{\begin{cases}-3\le x\le2\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy....
TÌM MAX CỦA\(-X+10+\sqrt{X-2}+2\sqrt{X-1}\)
giải hệ phương trình :
a) \(\hept{\begin{cases}x\cdot\left(1+y-x\right)=-2\cdot y^2-y\\x\cdot\left(\sqrt{2\cdot y}-2\right)=y\cdot\left(\sqrt{x-1}-2\right)\end{cases}}\)
b) \(\hept{\begin{cases}1+x\cdot y+\sqrt{x\cdot y}=x\\\frac{1}{x\cdot\sqrt{x}}+y\cdot\sqrt{y}=\frac{1}{\sqrt{x}}+3\cdot\sqrt{y}\end{cases}}\)
Làm hộ mk nhé mk tick cho :))))))))))
Cho \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{x\sqrt{x}-1}\)
a)Tìm ĐKXĐ,rút gọn
b)tim max của M