Tim x, y biet x : 2 = y : (-5) va x - y = -7
Tim hai so x va y ,biet :x÷2=y÷(-5) va x-y=-7
\(\frac{x}{2}=\frac{y}{-5}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = -1.2 = -2
y = -1.(-5) = 5
vậy_
X/2=Y/5
Ap dung t/c cua day ti so bang nhau ta co
x/2=Y/-5=x-y/2-(-5)=-7/7=-1 x=-1×2=-2. Y= -1×-5=5. Vay x=-2. y=5
Tim x, y biet x : 2 = y : (-5) va x - y = -7
Ta có: \(\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=-1\Rightarrow x=-2\\\dfrac{y}{-5}=-1\Rightarrow y=5\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{-5}\) và x-y=-7
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\)
=>x=2.(-1)=-2
y=(-5).(-1)=5
vậy x=-2, y=5
Theo bài ta có :
\(x:2=y:\left(-5\right)\)
\(x-y=-7\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{-7}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-1\Leftrightarrow x=-2\\\dfrac{y}{-5}=-1\Leftrightarrow y=5\end{matrix}\right.\)
Vậy ....
tim hai so x;y biet: x:2=y:(-5) va x-y = -7
\(\frac{x}{2}\)=\(\frac{y}{-5}\)=\(\frac{x-y}{2-\left(-5\right)}\)=\(\frac{x-y}{7}\)=-1
Vậy:x=-2,y=5
Tim x,y,z biet:
(2|x|+5)/3=(3|y|-1)/5=(3-z)/7 va 2|x|+7|y|+3z=-14
Tim x,y,z biet :x+2/7 =y-3/5 =z/3 va x+y - z = -17
_GIUP_MINH_VOI_NHE_MK_TICK_CHO
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=\frac{-18}{9}=-2\)
\(\frac{x+2}{7}=-2\Rightarrow x=-16\)
\(\frac{y-3}{5}=-2\Rightarrow y=-12\)
\(\frac{z}{3}=-2\Rightarrow z=-6\)
1. tim x biet :
a, (x-2)(x+3) > 2x\(^2\) -x -5
b, x( x-5) > x-4
2. cho 2 so x va y thoa man : x+y = 7 va xy=2 . khong tinh x va y , hay tinh gia tri cua bieu thuc A= x - y ( biet x< y)
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
tim x;y;z biet x/5=y/12=z/7 va x-y+z=30
Theo bài ra ta có
y/12=z/7và y+z=30
Áp dụng t/c dãy tỉ số bằng nhau ta có
y/12=z/7=y+z/12+7=30/19=bn tự lấy 30:19
=>x/5 =kết quả của30:9=>x=? Tương tự tìm y và z
tim x;y;z biet x/3=y/4;y/5=z/7 va x+y+z=98
Theo đề:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y+z}{15+20+28}=\frac{98}{63}=\frac{14}{9}\)
\(\Rightarrow\frac{x}{15}=\frac{14}{9}\Rightarrow x=\frac{14.15}{9}=\frac{70}{3}\)
\(\Rightarrow\frac{y}{20}=\frac{14}{9}\Rightarrow y=\frac{14.20}{9}=\frac{280}{9}\)
\(\Rightarrow\frac{z}{28}=\frac{14}{9}\Rightarrow z=\frac{14.28}{9}=\frac{392}{9}\)
Vậy...
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x}{3.5}=\frac{y}{4.5}\) HAY \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}=\frac{y}{5.4}=\frac{z}{7.4}\) HAY \(\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y+z}{15+20+28}=\frac{98}{63}=\frac{14}{9}\)
Vậy \(x=\frac{14}{9}.15=70,3;y=\frac{14}{9}.20\approx31,11;z=\frac{14}{9}.28\approx43,5\)
Ta có:
x/3 = y/4 => x/15 = y/20
y/5 = z/7 => y/20 = z/28
=> x/15 = y/20 = z/28
Áp dụng tính chất của dãy tỉ số = nhau ta có:
x/15 = y/20 = z/28 = x + y + z/15 + 20 + 28 = 98/63 = 14/9
=> x = 14/9 × 15 = 70/3
=> y = 14/9 × 20 = 280/9
=> z = 14/9 × 28 = 392/9
Tim x, y, z biet :
a , x/5 = y/7 va x . y =140
b , x : y : z = 2 : 5 : 7 va 3x + 2y - z =27
Moi nguoi giup minh giai bai nay nha minh can gap
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
a, \(\frac{x}{5}=\frac{y}{7}\left(x.y=140\right)\)
Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow7x=5y\)
\(\Rightarrow x.y=7k.5k=35k^2=140\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)
Vậy ....
b, \(x:y:z=2:5:7\left(3x+2y-z=27\right)\)
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Leftrightarrow x=2k;y=5k=z=7k\)
\(\Leftrightarrow3x+2y-z=6k+10k-7k=27\)
\(\Leftrightarrow x=6;y=15;z=21\)
Vậy ...