coos a - sin a =1/5. Tìm cot a
a) Biết sin a =\(\dfrac{2}{3}\).Tính cos a,tan a,cot a
b)Biết cos a =\(\dfrac{1}{5}\).Tính sin a, tan a,cot a
c)Biết tan a = 2.Tính sin a,cos a ,cot a.
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
1)tính giá trị biểu thức:
p=tan 37 °+sin^2 28 °-3tan 52 °/cot 28 °+sin^2 62 °-cot 53 °
2) tìm góc nhọn a(alpha) biết sin a = cos a.
3) Cho biết x=3. Tính giá trị của các biểu thức sau :
a/ A=32018.cot2017x
b/ B= sin2x + 2 sin x . cos x - 5 cos2x
c/ D=1-(sin x + cos x)2 / cos2x
(mn ơi ai biết giúp mjh vs ạ) 😭
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
chứng tỏ:
tan a = sin a/ cos a;
cot a = cos a/ sin a;
tan a . cot a =1;
sin^2 a+ cos^2 a =1
Rút gọn các biểu thức sau :
a) (1- sin^2 x) cot^2 x + 1- cot^2 x
b) ( tan x + cot x ) ^2 - ( tan x - cot x ) ^2
c) ( x. Sin a - y. Cos a )^2 + ( x. Cos a + y. Sin a )^2
a, \(\left(1-sin^2x\right)cot^2x+1-cot^2x\)
\(=cot^2x-sin^2x.cot^2x+1-cot^2x\)
\(=1-sin^2x.\frac{\text{cos}^2x}{sin^2x}=1-\text{cos}^2x=sin^2x\)
b,\(\left(tanx+cotx\right)^2-\left(tanx-cotx\right)2\)
\(=tan^2x2.tanx.cotx+cot^2x-tan^2x+2tanx.cotx-cot^2x\)
\(=4tanxcotx=4\)
c,\(\left(xsina-y\text{cos}a\right)^2+\left(x\text{cos}a+ysina\right)^2\)
\(=x^2sin^2a=2xysina\text{cos}a+y^2\text{cos}^2a+2xysina\text{cos}a+y^2sin^2a\)
\(=x^2\left(sin^2a+\text{cos}^2a\right)+y^2\left(sin^2a+\text{cos}^2a\right)\)
\(=x^2+y^2\)
Chứng minh đẳng thức :
a) \(\dfrac{\cos\left(a-b\right)}{\cos\left(a+b\right)}=\dfrac{\cot a.\cot b+1}{\cot a.\cot b-1}\)
b) \(\sin\left(a+b\right)\sin\left(a-b\right)=\sin^2a-\sin^2b=\cos^2b-\cos^2a\)
c) \(\cos\left(a+b\right)\cos\left(a-b\right)=\cos^2a-\sin^2b=\cos^2b-\sin^2a\)
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
Tìm sin ∝ ; cos ∝ biết :
1. \(\tan a=\dfrac{1}{3}\)
2.\(\cot a=\dfrac{3}{4}\)
1. Ta có \(1+\tan\alpha=\dfrac{1}{\cos^2\alpha}\Rightarrow\dfrac{1}{\cos^2\alpha}=1+\dfrac{1}{3}\Rightarrow\dfrac{1}{\cos^2\alpha}=\dfrac{4}{3}\Rightarrow\cos^2\alpha=\dfrac{3}{4}\Rightarrow\cos\alpha=\dfrac{\sqrt{3}}{2}\)
Mặt khác, \(tan\alpha=\dfrac{1}{3}=\dfrac{\sin\alpha}{\cos\alpha}\Rightarrow\sin\alpha=\dfrac{\cos a}{3}=\dfrac{\dfrac{\sqrt{3}}{2}}{3}=\dfrac{1}{2\sqrt{3}}\)
2. Ta có \(1+\cot^2\alpha=\dfrac{1}{\sin^2\alpha}\Rightarrow\dfrac{1}{\sin^2\alpha}=1+\dfrac{9}{16}\Rightarrow\dfrac{1}{\sin^2\alpha}=\dfrac{25}{16}\Rightarrow\dfrac{1}{\sin a}=\dfrac{5}{4}\Rightarrow\sin\alpha=\dfrac{4}{5}\)
Mặt khác, \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\Rightarrow\cos\alpha=\sin\alpha.\cot\alpha=\dfrac{3}{4}.\dfrac{4}{5}=\dfrac{3}{5}\)
tính cos a , tan a , cot a biết sin a =1/5
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{1}{5}\right)^2=\frac{24}{25}\)
\(\Leftrightarrow\cos\alpha=\frac{2\sqrt{6}}{5}\)
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{1}{5}}{\frac{2\sqrt{6}}{5}}=\frac{\sqrt{6}}{12}\)
\(\tan\alpha.\cot\alpha=1\)
\(\Leftrightarrow\cot\alpha=\frac{1}{\tan\alpha}=\frac{1}{\frac{\sqrt{6}}{12}}=2\sqrt{6}\)
Chúc bạn hok tốt!!! nguyenthitonga