Những câu hỏi liên quan
LEGGO
Xem chi tiết
Nguyễn Thị Huyền Trang
23 tháng 7 2017 lúc 20:55

Với n=2 thì \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n=3.4.5...4>2^2=4\)

=> bất đẳng thức \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\)đúng với n=2

Gỉa sử bất đẳng thức \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\) đúng với n=k (\(k\ge2;k\in N\)), khi đó ta có:

\(\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k>2^k\) (giả thiết quy nạp)

Ta phải chứng minh bất đẳng thức trên đúng với n=k+1, tức là phải chứng minh \(\left(k+2\right)\left(k+3\right)\left(k+4\right)...2\left(k+1\right)>2^{k+1}\)

Ta có: \(\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k>2^k\) (giả thiết)

\(\Rightarrow\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k.\left(2k+1\right)>2^k\)

\(\Rightarrow2.\left(k+1\right)\left(k+2\right)\left(k+3\right)...\left(2k+1\right)>2.2^k\)

\(\Rightarrow\left(k+2\right)\left(k+3\right)\left(k+4\right)...\left(2k+1\right)\left(2k+2\right)>2^{k+1}\)

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\) đúng với n=k+1

Vậy với mọi số tự nhiên n>1 thì \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\)

nguyễn mai trang
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 11 2019 lúc 21:27

a/ Đẳng thức bạn ghi nhầm rồi, đây là công thức rất quen thuộc:

\(1^3+2^3+...+n^3=\frac{n^2\left(n+1\right)^2}{4}\)

Với \(n=1;2\) ta thấy đúng

Giả sử đẳng thức cũng đúng với \(n=k\) hay:

\(1^3+2^3+...+k^3=\frac{n^2\left(n+1\right)^2}{4}\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)

Thật vậy, ta có:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)

\(=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]=\left(k+1\right)^2\left(\frac{k^2+4k+4}{4}\right)\)

\(=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\) (đpcm)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 11 2019 lúc 21:32

b/

Ta thấy đẳng thức đúng với \(n=1;2\)

Giả sử nó cũng đúng với \(n=k\) hay:

\(1+3+...+\left(2k-1\right)=k^2\)

Ta cần chứng minh nó đúng với \(n=k+1\) hay:

\(1+3+...+\left(2k-1\right)+\left(2k+1\right)=\left(k+1\right)^2\)

Thật vậy, ta có:

\(1+3+...+\left(2k-1\right)+\left(2k+1\right)\)

\(=k^2+2k+1=\left(k+1\right)^2\) (đpcm)

Khách vãng lai đã xóa
Cấn Ngọc anh
Xem chi tiết
Đặng Diễm Quỳnh
Xem chi tiết
Nguyễn Nam Khánh
Xem chi tiết
Huyen Mai
Xem chi tiết
Nguyễn Đăng Minh
17 tháng 9 2019 lúc 19:17

dùng đồng dư đi :v 

2^2^2n=16^n

có 16 đồng dư 2 mod 7

=>16^n đồng dư 2 mod 7

=>16^n+5 đồng dư 0 mod 7

Cuong Dang
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Hồng Trinh
19 tháng 5 2016 lúc 14:30

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Hồng Trinh
19 tháng 5 2016 lúc 14:51

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

Hoàng Phúc
19 tháng 5 2016 lúc 14:36

Hồng Trinh đúng rồi nhưng mà dùng quy nạp cơ