Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Tuấn Minh
Xem chi tiết
Hà Trọng Hiếu
Xem chi tiết
Akai Haruma
14 tháng 6 2023 lúc 23:36

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

Nguyễn Ngọc Sơn
Xem chi tiết
Ngô Duy Quý
Xem chi tiết
Ngô Duy Quý
30 tháng 1 2017 lúc 13:59

mình nhầm.câu hỏi 2=-1

Đinh Thị Ngọc Anh
Xem chi tiết
Dương Thị Trà My
Xem chi tiết
Lightning Farron
3 tháng 8 2017 lúc 8:49

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\)

Hay \(VP\ge VT\)

Dấu "=" xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

Đặng Đức Lương
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 1:02

Lời giải:

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{-(b-c)^2-(c-a)^2-(a-b)^2}{(a-b)(b-c)(c-a)}\)

\(=\frac{-2(a^2+b^2+c^2-bc-ab-ac)}{(a-b)(b-c)(c-a)}=\frac{-2[(a^2+bc-ab-ac)+(b^2+ac-ba-bc)+(c^2+ab-ca-cb)]}{(a-b)(b-c)(c-a)}\)

\(=\frac{-2[(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)]}{(a-b)(b-c)(c-a)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

 

nguyễn xuân lộc
Xem chi tiết
higbygvyftfv
Xem chi tiết