Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\)
Hay \(VP\ge VT\)
Dấu "=" xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)