Tìm Min A=2x2+y2+6x+2y+2xy+2017
Tìm Max B= 2000/x2-2xy+2y2+2x-4y+2017
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
tìm GTNN của các bt
a, A=2x2+y2-2xy-2x+3
b,B=x2-2xy+2y2+2x-10y+17
c,C=x2-xy+y2-2y-2x
d,D=x2+xy+y2-3y-3x
e,E=2x2+2xy +5y2-8x-22y
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm Min/Max
A= y2-4y+9
B=x2-x+1
C=2x2-6x
A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5
= ( y - 2 )^2 + 5 >= 5
Dấu ''='' xảy ra khi y = 2
Vậy GTNN A là 5 khi y = 2
B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN B là 3/4 khi x = 1/2
C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 )
= 2 ( x - 3/2 )^2 - 9/2 >= -9/2
Dấu ''='' xảy ra khi x = 3/2
Vậy GTNN C là -9/2 khi x = 3/2
a) Ta có: \(A=y^2-4y+9\)
\(=y^2-4y+4+5\)
\(=\left(y-2\right)^2+5\ge5\forall y\)
Dấu '=' xảy ra khi y=2
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tìm GTNN:
a) B= x2 + 2y2 - 2xy - 4y + 5
b) C= 2x2 - 2xy + 5y2 +5
Tìm max, min:
\(A=x^2+2xy-4y+2017\)
\(B=x^2-2x+2017\)
\(C=-4x^2+8xy-3y^2+y-2017\)
\(D=-2x^2+4x+2017\)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
\(A=x^2+2xy+3y^2-4y+2017\)
\(A=\left(x^2+2xy+y^2\right)+\left(2y^2-4y+2\right)+2015\)
\(A=\left(x^2+2xy+y^2\right)+2\left(y^2-2y+1\right)+2015\)
\(A=\left(x+y\right)^2+2\left(y-1\right)^2+2015\ge2015\)
Vậy Amin=2015 <=> x=-1 và y=1
Bài 1) a) (2x+3y)2
b) (25x2-10x+1)
c) (x2-2y)2
d) 16x2-9y2
Bài 2) Tìm GTNN của biểu thức
D= x2+2y2-2xy-6y+2x+2020
Q= 2x2-4xy+y2-4x+6y+10
Tìm giá trị nhỏ nhất:
a/ P=x2+y2-6x-2y+17
b/ Q=x2+xy+y2-3x-3y+999
c/ R=2x2+2xy+y2-2x+2y+15
d/ S=x2+26y2-10xy+14x-76y+59
e/ T=x2-4xy+5y2+10x-22y+28
Giúp mình với nha!
a: \(P=x^2+y^2-6x-2y+17\)
\(=x^2-6x+9+y^2-2y+1+7\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+7\ge7\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-1=0
=>x=3 và y=1
b: \(Q=x^2+xy+y^2-3x-3y+999\)
\(=x^2+x\left(y-3\right)+y^2-3y+999\)
\(=x^2+2\cdot x\cdot\left(\frac12y-\frac32\right)+\left(\frac12y-\frac32\right)^2+y^2-3y-\left(\frac12y-\frac32\right)^2+999\)
\(=\left(x+\frac12y-\frac32\right)^2+y^2-3y-\left(\frac14y^2-\frac32y+\frac94\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34y^2-\frac32y-\frac94+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y-3\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y+1-4\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y-1\right)^2+996\ge996\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x+\frac12y-\frac32=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=-\frac12y+\frac32=-\frac12+\frac32=\frac22=1\end{cases}\)
c: \(R=2x^2+2xy_{}+y^2-2x+2y+15\)
\(=x^2-4x+4+x^2+2xy+y^2+2x+2y+11\)
\(=\left(x-2\right)^2+x^2+2xy+y^2+2x+2y+1+10\)
\(=\left(x-2\right)^2+\left(x+y+1\right)^2+10\ge10\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-2=0\\ x+y+1=0\end{cases}\Rightarrow\begin{cases}x=2\\ y=-x-1=-2-1=-3\end{cases}\)
d: \(S=x^2+26y^2-10xy+14x-76y+59\)
\(=x^2-10xy+25y^2+14x-70y+y^2-6y+59\)
\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+y^2-6y+9+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-3=0\\ x-5y+7=0\end{cases}\Rightarrow\begin{cases}y=3\\ x=5y-7=5\cdot3-7=15-7=8\end{cases}\)
e: \(T=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+4y^2+10x-20y+y^2-2y+28\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x-2y+5=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=2y-5=2\cdot1-5=2-5=-3\end{cases}\)
Tìm giá trị nhỏ nhất của biểu thức:
a, 3x2 – 3x + 1
b, x2 – 2x + y2 + 4y + 6
c, 2x2 + y2 – 2xy + 1
\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)