\(Cho\) \(a+b=2\)
\(Tính\) \(A=a^3+b^3-3\left(a^2+b^2\right)\)
Cho a+b+c\(a^3+b^3+c^3=3abc\) áp dụng tính B=\(\frac{\left(a^2-b^2\right)^3+\left(b^2-c^2\right)^3+\left(c^2-a^2\right)^3}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
Cho a + b = 1. Tính A = 2\(\left(a^3+b^3\right)\) - 3\(\left(a^2+b^2\right)\).
\(A=2\left(a+b\right)^3-6ab\left(a+b\right)-3\left(a+b\right)^2+6ab\)
\(=2-6ab-3+6ab=-1\)
cho \(a+b+c=0\) tính \(\dfrac{a^3+b^3+c^3}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Cho a-b+c=-4. Tính B = \(\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(B=\dfrac{a^3+c^3+3ac\left(a+c\right)-b^3-3ac\left(a+c\right)+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2\right]-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left(2a^2+2b^2+2c^2+2ab+2bc-2ca\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\right]}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}=-2\)
a) cho \(a+b+c=2\).tính \(A=\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(a+c\right)^2}\)
b)cho \(a+b+c=0\).tính \(B=\frac{a^2+b^2+c^2}{\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2}\)
c) cho \(a+b+c=0;abc\ne0\)tính \(M=\frac{a^3}{b^2+c^2-a^2}+\frac{b^3}{c^2+a^2-b^2}+\frac{c^3}{a^2+b^2-c^2}\)
ý a bạn có chắc viết đề bài đúng không
cho
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2021}\)
\(B=\left(\dfrac{3}{2}\right)^{2013}:2\)
tính B-A
Ta có \(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2021}\left(1\right)\)
\(\Rightarrow\dfrac{3}{2}A=\dfrac{3}{4}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2013}\left(2\right)\)
Lấy (2) - (1) ta được:
\(\dfrac{3}{2}A-A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{3}{4}-\dfrac{1}{2}-\dfrac{3}{2}\)
\(\dfrac{1}{2}A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{1}{4}\Rightarrow A=\dfrac{3^{2013}}{2^{2012}}+\dfrac{1}{2}\)
Vậy \(B-A=\dfrac{3^{2013}}{2^{2014}}-\dfrac{3^{2013}}{2^{2012}}+\dfrac{5}{2}\)
1. Cho a2 - b2 - c2 =3abc
Tính H = \(\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\left(1-\frac{c}{a}\right)\)
2. Cho a - b + c = - 4
Tính B = \(\frac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
Tìm hai số tụ nhiên a và b , biết BCNN (a, b) = 420, ƯCLN (a , b)= 21 và a+ 21= b
Cho A = \(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}^3\right)+\left(\frac{3}{2}^4\right)+...+\left(\frac{3}{2}\right)^{2012}\) và B = \(\left(\frac{3}{2}\right)^{2013}:2.\) tính B - A
cho a+b=1. Tính M=\(2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(=2\left(a+b\right)\left(a^2+ab+b^2\right)-3a^2-3b^2\)
\(=2a^2+2ab+2b^2-3a^2-3b^2\)
\(=-a^2+2ab-b^2\)
\(=-\left(a^2-2ab+b^2\right)\)
\(=-\left(a-b\right)^2\)
\(=-\left(1-b-b\right)^2=-\left(1-2b\right)^2\)
Bài 2: Cho đa thức: \(A\left(x\right)=2x^2+3x+6\)
\(B\left(x\right)=2x^2+2x+3\)
a) Tính: \(P\left(x\right)=A\left(x\right)-B\left(x\right)\)
b) Tính: \(P\left(x\right)\) tại \(x=-3\) ; \(x=2\)
a)\(P\left(x\right)=2x^2+3x+6-2x^2-2x-3\)
\(P\left(x\right)=x+3\)
b)thay x = -3 và P(x) ta đc
\(P\left(-3\right)=-3+3=0\)
thay x = 2 và P(x) ta đc
\(P\left(2\right)=2+3=5\)