phân tích đa thức sau thành nhân tử bằng cách sử dụng hằng đẳng thức
25-(3-x)^2
Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức:
9(x-3y)^2-25(2x+y)^2
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
Phương pháp sử dụng hằng đẳng thức:
Phân tích các đa thức sau thành nhân tử:
(a+b)^3-(a^3+b^3)
( a + b )3 - ( a3 + b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 - b3
= 3a2b - 3ab2
= 3ab ( a + b )
\(\left(a+b\right)^3-\left(a^3+b^3\right)\)
\(=\left(a+b\right)^3-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-a^2+ab-b^2\right)\)
\(=3ab\left(a+b\right)\)
Phân tích các đa thức sau thành nhân tử:
(a+b)^3-(a^3+b^3) = 3a . b . (b+a)
nha bạn chúc bạn học tốt nha
:)))))))))
phân tích đa thức thành nhân tử sử dụng hằng đẳng thức x^4-x^2+2x-1
giúp mik nhé
\(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
hk
tốt
Phân tích đa thức sau thành nhân tử ( bằng cách tạo ra hằng đẳng thức)
x2 + 3x - 10
\(x^2+3x-10\)
\(=x^2+5x-2x-10\)
\(=\left(x^2+5x\right)-\left(2x+10\right)\)
\(=x\left(x+5\right)-2\left(x+5\right)\)
\(=\left(x-2\right)\left(x+5\right)\)
Thích hđt thì chiều :))
x2 + 3x - 10
= ( x2 + 3x + 9/4 ) - 49/4
= ( x + 3/2 )2 - ( 7/2 )2
= ( x + 3/2 - 7/2 )( x + 3/2 + 7/2 )
= ( x - 2 )( x + 5 )
\(x^2+3x-10\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-10-\left(\frac{3}{2}\right)^2\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{49}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\left(\frac{7}{2}\right)^2\)
\(=\left(x+\frac{3}{2}-\frac{7}{2}\right)\cdot\left(x+\frac{3}{2}+\frac{7}{2}\right)\)
\(=\left(x+5\right)\cdot\left(x-2\right)\)
Phân tích đa thức 10x - 25 - x2 thành nhân tử bằng phương pháp dùng hằng đẳng thức.
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
10x - 25 - x2
= x2- 10x - 25
= - ( x2 +10x +25)
= -(x2 + 2.x.5+52 )
= - (x+5 )2
Phân tích đa thức thành nhân tử (Áp dụng hằng đẳng thức)
10x - 25 - x2
Giúp e vs ạ! E cmơn nhiều !
\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
Chúc bạn học tốt và nhớ click cho mình với nhá!
= (5x-25) + (5x - x2)
= 5(x-5) + x(5-x)
= 5(x-5) - x(x-5)
= (5 - x)(x - 5)
\(10x-25-x^2=-\left(x^2-2\cdot x\cdot5+5^2\right)=-\left(x-5\right)^2\)
Phân tích các đa thức sau thành nhân tử(sử dụng các hằng đẳng thức)
a)\(16x^2-\left(x^2+4\right)^2\)
b)\(\left(x+y\right)^3+\left(x-y\right)^3\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
phân tích đa thức thành nhân tử chung sử dụng hằng đẳng thức
9x^6-12x^7+4x^8
\(9x^6-12x^7+4x^8\)
\(=x^6\left(4x^2-12x+9\right)\)
\(=x^6.\left(2x-3\right)^2\)
hk
tốt
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
Tìm x:
x2- 10x = -25
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
\(x^2-10x+25=0\)
\(x^2-10x+5^2=0\)
\(\left(x-5\right)^2=0\)
phân tích đa thức thành nhân tử bằng ph ph dùng hằng đẳng thức
\(x^2-10x+25\)
\(x^2-10x+25=x^2-2.5x+5^2=\left(x-5\right)^2\)