Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Trang
Xem chi tiết
Phạm Ngân Hà
23 tháng 10 2017 lúc 21:14

B A O D C

Vẽ BO, kéo dài BO cắt AC tại D.

Ta có \(\widehat{BOC}=\widehat{BDC}+\widehat{DCO}\)\(\widehat{BDC}=\widehat{A}+\widehat{ABD}\)

\(\Rightarrow\widehat{BOC}=\widehat{A}+\widehat{ABD}+\widehat{DCO}>\widehat{A}\)

Bin
Xem chi tiết
Nguyễn Bá Hùng
9 tháng 2 2018 lúc 17:42

A B C O K

a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK

                 => \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\)    (1)

               + \(\widehat{OKB}\)là góc ngoài của tam giác AKC

                  =>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)

Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)

hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)

=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)

 Xét tam giác ABC có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)

=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)

Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)

Ta có: BO là tia phân giác của góc ACB

=>\(2\widehat{ABO}=\widehat{ABC}\)(**)

Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)

=>\(2\widehat{ACO}=\widehat{ACB}\)

=> CO là tia phân giác của góc ACB

Mai Hiệp Đức
11 tháng 8 2019 lúc 9:27

thank you

Hoang Anh Dũng
Xem chi tiết
Đào Trí Bình
Xem chi tiết
Lê Song Phương
6 tháng 10 2023 lúc 18:59

 Kéo dài tia AO và đặt là Ax. Khi đó:

\(\widehat{BOC}=\widehat{BOx}+\widehat{COx}\)

 Xét tam giác OAB có \(\widehat{BOx}\) là góc ngoài tại O nên 

\(\widehat{BOx}=\widehat{A_1}+\widehat{ABO}\) (1)

 Tương tự, ta có \(\widehat{COx}=\widehat{A_2}+\widehat{ACO}\) (2)

 Cộng theo vế (1) và (2), ta được:

 \(\widehat{BOC}=\widehat{A_1}+\widehat{A_2}+\widehat{ABO}+\widehat{ACO}\)

        \(=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

 Ta có đpcm.

Nguyễn Trung Hiếu
Xem chi tiết
Nguyệt
6 tháng 3 2019 lúc 23:23

A B C O 1 2 1 2 1 1

a) (thay vô y như toán đại í )

t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^

t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ

=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^

=> BOC^=BAC^+ABO^+ACO^

b) B2^+C2^=90 độ - A1^:2 

=> B2^+C^2= 90 độ - (180 độ  - B1^ - B2^ - C1^ - C2^):2

=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2

=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)

=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^

Nguyệt
6 tháng 3 2019 lúc 23:26

có mấy cái t vt: B^1 tức là góc B1 đó, vt nhầm :((

Lợi Trần Văn
Xem chi tiết
Doanh Phung
Xem chi tiết
Thiên Từ
19 tháng 8 2019 lúc 22:04

A B C F E D O

Doanh Phung
19 tháng 8 2019 lúc 22:13

HAY DAY CHANG TRAI TRE

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 0:29

a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)

Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B = \widehat C = ({180^o} - {56^o}):2 = {62^o}\)

b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )

Mà M, N là trung điểm của AB, AC

Nên AM = AN

Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A

\( \Rightarrow \widehat M = \widehat N = ({180^o} - {56^o}):2 = {62^o}\)

c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)

Mà chúng ở vị trí đồng vị nên MN⫽BC

Ruby
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2023 lúc 9:09

a: góc BOC=180 độ-góc OBC-góc OCB

=180 độ-(góc ABC-góc ABO)-(góc ACB-góc ACO)

=180 độ-góc ABC-góc ACB+góc ABO+góc ACO

=góc A+góc ABO+góc ACO

b: góc BOC=góc A+90 độ-1/2*góc A=90 độ+1/2*góc A

=>góc OBC+góc OCB=90 độ-1/2*góc A

=>góc ABC/2+góc OCB=(180 độ-góc BAC)/2

=>góc OCB=góc ACB/2

=>CO là phân giác của góc ACB