Tìm \(x,y\in N\) biết:
\(\left(x-y\right)^2+4.\left(y-1\right)^2=9\)
Tìm \(x,y\in N\) biết:
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
Tìm x, y \(\in N,\) biết:
\(\left(x+y\right)^2+4.\left(y-1\right)^2=9\)
Tìm x, y, z biết:
\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\) và \(\left(x+2\right)^2+3.\left(y+2\right)^2-\left(z+2\right)^2=24\)
\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)
\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)
\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)
\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)
\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)
Bạn chia trường hợp rồi tìm x,y,z nhé
Chứng minh rằng:\(x^{\left(2^{y+1}\right)}+x^{\left(2^y\right)}+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)...\left(x^{\left(2^{y-1}\right)}+x^{\left(2^{y-2}\right)}+1\right)\left(x^{\left(2^y\right)}+x^{\left(2^{y-1}\right)}+1\right)\)với mọi \(x\in N;x>0\)và \(y\in N;y>1\)
Tìm x,y biết :
a) \(\left|3.x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}.y+\dfrac{3}{5}\right|\)= 0
b)\(\left|\dfrac{3}{2}.x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}.y-\dfrac{1}{2}\right|\le0\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
1 Tìm số dư khi chia A ,B cho 2 biết
A=\(\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\left(n\in N\right)\)
B=\(1995^n+1996^n+1997^n\left(n\in N\right)\)
2.Tìm chữ số tận cùng của \(9^{9^{2000}}\)
b.tìm 3 chứ số tận cùng của \(2008^{100}\)
3.tìm (x,y)thõa mãn:\(\left(\frac{2x-5}{9}\right)^{2016}+\left(\frac{3y+0,4}{3}\right)^{2012}=0\)
b,\(x\left(x+y\right)=\frac{1}{48}\) và \(y\left(x+y\right)=\frac{1}{24}\)
\(\left\{{}\begin{matrix}\left(x^2+x+1\right)\left(y^2+y+1\right)=3\\\left(1-x\right)\left(1-y\right)=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=1\\x^3+y^3=x^2+y^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
bạn nào biết làm câu nào thì giúp mik nha☺️☺️☺️ thanks
1) \(\left\{{}\begin{matrix}x+y=1\\x^3+y^3=x^2+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x^2+y^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x^2-xy+y^2-x^2-y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=1\\y=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\\left(x^2+y^2\right)^2-3x^2y^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\\left(5\right)^2-3x^2y^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\-3x^2y^2=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\x^2y^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\\left(5-y^2\right)y^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\-y^4+5y^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\-y^4+5y^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\\left[{}\begin{matrix}y^2=1\\y^2=4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2=5-y^2\\y^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}x^2=5-y^2\\y^2=4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2=4\\y^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}x^2=1\\y^2=4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
vậy \(S=\left\{\left(2;1\right),\left(2;-1\right),\left(-2;1\right),\left(-2;-1\right),\left(1;2\right),\left(1;-2\right),\left(-1;2\right),\left(-1;-2\right)\right\}\)
4) \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5-1=-y^5\\x^9-x^4+y^9-y^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x^5-1=-y^5\\y^5-1=-x^5\end{matrix}\right.\\x^4\left(x^5-1\right)+y^4\left(y^5-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5+y^5=1\\x^4\left(-y^5\right)+y^4\left(-x^5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5+y^5=1\\-x^4y^4\left(x+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5+y^5=1\\\left[{}\begin{matrix}x=0\\y=0\\x+y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^5+y^5=1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^5+y^5=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^5+y^5=1\\x=-y\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-y\\x^5-x^5=1\end{matrix}\right.\end{matrix}\right.\)
vậy \(S=\left\{\left(1;0\right),\left(0;1\right)\right\}\)
tìm x,y \(\in Z\) biết \(x^2.\left(y-1\right)+y^2.\left(x-1\right)=1\)
\(Tìm\ các\ số\ x,y,z \in Q\ biết \ rằng\)
\(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(9+y\right)=3:1:2:5\)
Tìm \(x;y;z\in Q\) biết:
a)\(\left|x+\frac{3}{7}\right|+\left|y-\frac{4}{9}\right|+\left|z+\frac{5}{11}\right|=0\)
b)\(\left|x-\frac{2}{5}\right|+\left|x+y-\frac{1}{2}\right|+\left|y-z+\frac{3}{5}\right|=0\)
c)\(\left|x+y-2,8\right|+\left|y+z+4\right|+\left|z+x-1,4\right|=0\)
Giúp mk vs.Ai làm được câu nào thì làm!
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Câu a,b,c tương tự nhau cả
Vì mỗi tuyệt đối lớn hơn hoặc bằng 0 0 nên 3 tuyệt đối cộng lại với nhau =0
Khi và chỉ khi mỗi tuyệt đối =0