Tìm x,y,z
a)\(\frac{x}{4}-\frac{1}{9}=\frac{1}{2}\left(xthuộcZ\right)\)
b)\(x+y=xy=x:y\left(với\right)xykhác0\)
c)\(x-y=xy=xy\left(ykhac0\right)\)
d)\(\left(x+1\right)\left(x-2\right)< 0\)
e)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
f)\(x\left(x+y+z\right)=-5\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=5\)
Tìm x;y;z
\(\left(x+y\right)\div\left(5-z\right)\div\left(y+z\right)\div\left(9+y\right)=3\div1\div2\div5\)
Tìm x,y,z
\(\left|x-3\right|+\left|y-2x\right|+\left|2z-x+y\right|=0\)
\(\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)
Tìm x, y, z, t là số nguyên, biết:
\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=20092009\)
Tìm x,y,z khi :
a, \(\frac{x}{2}=\frac{y}{3}\) , \(\frac{y}{4}=\frac{z}{5}\) và x - y- z= 28
b, \(\frac{4-z}{1}=\frac{y+z}{2}=\frac{x+y}{3}=\frac{y+8}{5}\)
c, \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}=0\)
a) Tìm x,y,z biết : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
b) Tìm x biết : \(\left|x\right|+\left|x-1\right|+\left|x-2\right|=6\)
a ) Tính A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
b ) Tìm x và y biết : x , y \(\in\) Z và 2x + 2y = 2x+y
Tìm x ; y ; z biết
a) 3 \(\left|x\right|\) = -9 b) 6(x-2) - (x - 3 ) = 31 c) \(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{3}\) và x + y + z = 30
3 \(\left|x\right|\) = 12
Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\) trong đó \(a;b;c\ne0\) và khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)