Giúp nha :
Tìm x ; y ; z biết :
\(\sqrt{\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2}+3\left(x^2-1\right)\left(y^2-1\right)\left(z^2-1\right)+\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
Tìm \(x;y\in Z\)
1)\(x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\)
2)\(y\left(y+1\right)\left(y+2\right)\left(y+3\right)=x^2\)
ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
câu 1: giải hệ phương trình
\(\left(x+y\right)^2+\left(y+z\right)^4+....+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
\(\left(xy\right)^2+2\left(yz\right)^4+....+100\left(zx\right)^{100}=-[\left(x+y+z\right)+2\left(yz+zx+xy\right)+......+99\left(x+y+z\right)]\)\(\left(\frac{1}{x}+\frac{1}{y}\right)^2+\left(\frac{1}{y^2}+\frac{1}{z^2}\right)^2+...+\left(\frac{1}{x^{99}}+\frac{1}{z^{99}}\right)^2=-\frac{1}{\left(xy\right)^2+2\left(yz\right)^2+.....+99\left(zx\right)^2}\)
tìm x,y,z
cho 3 số x;y;z thỏa mãn x+y+z=3.Tìm Min của biểu thức:
P=\(\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)
chị QA
ta có đề bài <=>
\(\frac{x^2}{y}-2x+y+\frac{y^2}{z}-2y+z+\frac{z^2}{x}-2z+x+\left(x+y+z\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
=\(\frac{\left(x-y\right)^2}{y}-\left(x-y\right)^2+...+\left(x+y+z\right)\)
=\(\left(x-y\right)^2\left(\frac{1}{y}-1\right)+....+\left(x+y+z\right)\)
mà \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\Rightarrow x,y,z\in\left[0;1\right]\)
=> \(\frac{1}{y}-y>0\)
=> \(A\ge x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=\frac{1}{3}\)
Cho x y z > 0 và xyz=1.Tìm \(P=\frac{x^3}{\left(1+x^2\right)\left(1+y^2\right)}a+\frac{y^3}{\left(1+y^2\right)\left(1+z^2\right)}+\frac{z^3}{\left(1+z^2\right)\left(1+x^2\right)}\)
Tìm x,y,z biết \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)