Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Quý Lân
Xem chi tiết
Lưu Gia Linh
Xem chi tiết
Tony
13 tháng 7 2016 lúc 10:27

Ta có \(\left(x+y\right)^3\)=\(x^3+3x^2y+3xy^2+y^3\)

Mà \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)=\(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)\(=x^3+\left(-6x^2y+9x^2y\right)+\left(-6xy^2+9xy^2\right)+y^3\)

=\(x^3+3x^2y+3xy^2+y^3\)=\(\left(x+y\right)^3\)

=>đpcm

Lưu Gia Linh
13 tháng 7 2016 lúc 10:35

dạ e k gõ lm ak

Bong Entertainment
Xem chi tiết
Nguyễn An
Xem chi tiết
Không có tên
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:25

b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)

\(=x^4y+2xy-xy^4-2xy\)

\(=xy\left(x^3-y^3\right)\)

\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)

Nguyễn Sơn Nan
Xem chi tiết
meme
19 tháng 8 2023 lúc 20:13

Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.

ThiênThần Dễ Thương
Xem chi tiết
T.Thùy Ninh
17 tháng 6 2017 lúc 20:03

\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)=3x^2-15xy-3y^2+15xy-3x^2+3y^2=0\)Vậy biểu thức trên không phụ thuộc vào biến x ,y

Phương Anh
17 tháng 6 2017 lúc 20:13

M= 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2

Vậy biểu thức M có giá trị không phụ thuộc vào biến x và biến y.

Phạm Hà Linh
Xem chi tiết
Ngô Chi Lan
22 tháng 8 2020 lúc 17:06

Bài 1:

a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)

b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\)

c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)

Khách vãng lai đã xóa
Ngô Chi Lan
22 tháng 8 2020 lúc 17:10

Bài 2:

a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(b^2+3a^2\right)\)

Khách vãng lai đã xóa
ミ★Ƙαї★彡
22 tháng 8 2020 lúc 19:33

a, \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)

\(\Leftrightarrow x^2+2xy=x^2+2xy\left(đpcm\right)\)

b, \(\left(x^2+y^2\right)-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)

\(\Leftrightarrow x^2+y^2-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow x^2+y^2-4x^2y^2=x^4-2x^2y^2+y^4\)đề sai ? 

Khách vãng lai đã xóa
hoàng nguyễn anh thảo
Xem chi tiết