Chứng minh \(\sqrt{5}\) là số vô tỉ
Chứng minh \(\sqrt{2}\)là số vô tỉ
Chứng minh \(\sqrt{5-2}\)là số vô tỉ
Nào , cop đi , cop đi
HT
:)))))))))))
@@@@@@@@@@@
) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ
chứng minh:
a,\(\sqrt{2}\)là số vô tỉ
b,\(\sqrt{5}\)là số vô tỉ
c,\(\sqrt{2}\)-7 là số vô tỉ
d,\(\sqrt{5}\)+3 là số vô tỉ
Chứng minh rằng:
a) \(\sqrt{2}+\sqrt{3}\) là số vô tỉ
b) \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ
c) A = \(\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) B = \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( m;n thuộc Q )
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ
\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ
phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí
b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a
bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí
c bình phương lên => căn 2=A-1 thuộc Q => vô lí
d tương tự căn 3=Bn-mn thuộc Q => vô lí
chúc bạn học tốt
Chứng minh rằng
a) 7 - \(\sqrt{2}\)là số vô tỉ
b) \(\sqrt{5}\)+24 là số vô tỉ
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ
♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。
chứng minh them \(\sqrt{2}\) và \(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :
https://olm.vn/hoi-dap/detail/227642288657.html
Chứng minh
a) Số \(\sqrt{3}\) là số vô tỉ
b) Các số \(5\sqrt{2};3+\sqrt{2}\) đều là số vô tỉ
a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)
Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.
Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2
Kết quả trên chứng tỏ b chia hết cho 3.
Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy √3 là số vô tỉ.
b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a
Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 5√2 là số vô tỉ.
* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:
3 + √2 = b
Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 3 + √2 là số vô tỉ.
Chứng Minh : \(\sqrt{3};\sqrt{5};\sqrt{7}+5\)là các số vô tỉ
Giả sử \(\sqrt{3}\)là một số hữu tỉ
\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)
\(\Rightarrow3=\frac{a^2}{b^2}\)
Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố
=> \(a^2⋮3\Leftrightarrow a⋮3\)
Vì \(a⋮3\).=> Đặt a= 3k
=>a2 = 9k2
Thay vào ta có :
\(3=\frac{a^2}{b^2}\)
\(\Rightarrow b^2=9k^2:3\)
\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố
\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)
Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1
=> \(\sqrt{3}\)là một số vô tỉ
Chứng minh rằng \(\sqrt{2+\sqrt{5}}\)là số vô tỉ
Ta có: \(\sqrt{5}\) là 1 số vô tỉ
=> \(2+\sqrt{5}\) là 1 số vô tỉ
=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ
=> đpcm
Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)
\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)
\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))
Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ
Chứng minh rằng:
a,\(5\sqrt{2}\) là số vô tỉ
b,\(7+\sqrt{5}\) là số vô tỉ
Chứng minh \(\sqrt{5}\) là số vô tỉ.
giả sử √5 là số hữu tỉ
=> √5 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 5 = a²/b²
<=> a² = 5b²
=> a² ⋮ 5
5 nguyên tố
=> a ⋮ 5
=> a² ⋮ 25
=> 5b² ⋮ 25
=> b² ⋮ 5
=> b ⋮ 5
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √5 là số vô tỉ
giả sử √5 là số hữu tỉ
=> √5 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 5 = a²/b²
<=> a² = 5b²
=> a² ⋮ 5
5 nguyên tố
=> a ⋮ 5
=> a² ⋮ 25
=> 5b² ⋮ 25
=> b² ⋮ 5
=> b ⋮ 5
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √5 là số vô tỉ(đpcm)
Chứng minh : \(\sqrt{3}-\sqrt{2}\) là số vô tỉ.
Giả sử \(\sqrt{3}-\sqrt{2}\) là số hữu tỉ
nên \(\sqrt{3}-\sqrt{2}=\dfrac{p}{q}\left(q\ne0\right)\)
\(\Leftrightarrow\dfrac{p^2}{q^2}=5-2\sqrt{6}\)
\(\Leftrightarrow\dfrac{p^2}{q^2}-5=-2\sqrt{6}\)(vô lý)
Vậy: \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Link : Chứng minh rằng căn2 +căn3 là số vô tỉ