3x2-2x+3y2-2y+6xy-100
cho x+y=5
P=3x2-2x+3y2-2y+6xy-100
Q=x3+y3-2x2-2y2+3xy(x+y)-4xy+3(x+y)+10
a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)
\(P=3\left(x+y\right)^2-2.5-100\)
\(P=3.5^2-110\)
\(P=-35\)
b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)
\(Q=5^3-2.5^2+25\)
\(Q=100\)
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)
phân tích đa thức thành nhân tử :
a.9x2-3x+2y-4y2
b.3x2-6xy+3y2-5x+5y
a)
\(9x^2-3x+2y-4y^2\\=(9x^2-4y^2)-(3x-2y)\\=[(3x)^2-(2y)^2]-(3x-2y)\\=(3x-2y)(3x+2y)-(3x-2y)\\=(3x-2y)(3x+2y-1)\)
b)
\(3x^2-6xy+3y^2-5x+5y\\=3(x^2-2xy+y^2)-5(x-y)\\=3(x-y)^2-5(x-y)\\=(x-y)[3(x-y)-5]\\=(x-y)(3x-3y-5)\\Toru\)
Bài 1: Phân tích đa thức thành nhân tử:
a) x2 -2x -y2 +2y
b) 2x +2y -x2 -xy
c) 3x2 -6xy +3y2 -12z2
d) x2 -25 +y2 +2xy
a) x2-2x-y2+2y
=(x2-y2)-(2x-2y)
=(x-y)(x+y)-2(x-y)
=(x-y)(x+y-2)
d) x2-25+y2+2xy
=(x2+y2+2xy)-52
=(x+y)2-52
=(x+y+5)(x+y-5)
Phân tích đa thức thành nhân tử :
a) 3x2-6xy+3y2-12x2
b) 3x2y2-6x2y3+12x2y2
c) 3x2-3y2+12x-12y
a) \(3x^2-6xy+3y^2-12x^2=3\left(x^2-2xy+y^2\right)-12x^2=3\left(x-y\right)^2-12x^2=3\left[\left(x-y\right)^2-4x^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)
b)\(3x^2y^2-6x^2y^3+12x^2y^2=3x^2y^2\left(1-2y+4\right)=3x^2y^2\left(5-2y\right)\)
c) \(3x^2-3y^2+12x-12y=3\left(x^2-y^2\right)+12\left(x-y\right)=3\left(x-y\right)\left(x+y+4\right)\)
a: \(3x^2-6xy+3y^2-12x^2\)
\(=3\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\left[\left(x-y\right)^2-4x^2\right]\)
\(=3\left(x-y-2x\right)\left(x-y+2x\right)\)
\(=3\left(-x-y\right)\left(3x-y\right)\)
b: \(3x^2y^2-6x^2y^3+12x^2y^2\)
\(=3x^2y^2\left(1-2y+4\right)\)
\(=3x^2y^2\left(-2y+5\right)\)
c: Ta có: \(3x^2-3y^2+12x-12y\)
\(=3\left(x-y\right)\left(x+y\right)+12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
Cho các số x,y thỏa mãn đẳng thức
tính giá trị biểu thức M=(x+y)2017+(x-2)2018+(y+ 1)2015
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Phân tích đa thức sau thành nhân tử: 3x2 + 6xy + 3y2 – 3z2
3x2 + 6xy + 3y2 – 3z2
= 3.(x2 + 2xy + y2 – z2)
(Nhận thấy xuất hiện x2 + 2xy + y2 là hằng đẳng thức nên ta nhóm với nhau)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
phân tích đa thức sau thành phân tử
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
a) \(3x^4y-12x^2y^3=3x^2y\left(x^2-\left(2y\right)^2\right)=3x^2y\left(x+2y\right)\left(x-2y\right)\)
b) Sửa đề: \(x^2-y^2-8x+16=\left(x-4\right)^2-y^2=\left(x-4-y\right)\left(x-4+y\right)\)
c) \(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
d) \(3x^2-6xy+3y^2-27=3\left(x^2-2xy+y^2-9\right)=3\left(\left(x-y^2\right)-3^2\right)=3\left(x-y-3\right)\left(x-y+3\right)\)